POJ 1189 钉子和小球【基础DP】

55 篇文章 1 订阅
18 篇文章 0 订阅

钉子和小球
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 8073 Accepted: 2516

Description

有一个三角形木板,竖直立放,上面钉着n(n+1)/2颗钉子,还有(n+1)个格子(当n=5时如图1)。每颗钉子和周围的钉子的距离都等于d,每个格子的宽度也都等于d,且除了最左端和最右端的格子外每个格子都正对着最下面一排钉子的间隙。 
让一个直径略小于d的小球中心正对着最上面的钉子在板上自由滚落,小球每碰到一个钉子都可能落向左边或右边(概率各1/2),且球的中心还会正对着下一颗将要碰上的钉子。例如图2就是小球一条可能的路径。 
我们知道小球落在第i个格子中的概率pi=pi= ,其中i为格子的编号,从左至右依次为0,1,...,n。 
现在的问题是计算拔掉某些钉子后,小球落在编号为m的格子中的概率pm。假定最下面一排钉子不会被拔掉。例如图3是某些钉子被拔掉后小球一条可能的路径。 

Input

第1行为整数n(2 <= n <= 50)和m(0 <= m <= n)。以下n行依次为木板上从上至下n行钉子的信息,每行中'*'表示钉子还在,'.'表示钉子被拔去,注意在这n行中空格符可能出现在任何位置。

Output

仅一行,是一个既约分数(0写成0/1),为小球落在编号为m的格子中的概pm。既约分数的定义:A/B是既约分数,当且仅当A、B为正整数且A和B没有大于1的公因子。

Sample Input

5 2
*
   * .
  * * *
 * . * *
* * * * *

Sample Output

7/16

Source


原题链接:http://poj.org/problem?id=1189

题目是中文就不多啰嗦了,但是有一点,如果某个点没有钉子,那么小球会落到下面第二层的位置。

理解以后就和POJ1136 The Triangle差不多了。

由于概率每次都要处于2,并且分数加法有点麻烦,所以,开始时一个数的值设为2^n,

这样便可简化运算.

运算方法有两种,

一.dp[i][j]+=(dp[i-1][j-1]+dp[i-1][j])/2;

二.dp[i+1][j]+=dp[i][j]/2,dp[i+1][j+1]+=dp[i][j]/2;

相对来说第二种方法更简单一点.

样例过程:

32
16 0
8 8 0
4 0 20 0
2 2 10 10 0
1 2 14 10 5 0

AC代码:

/**
  * 行有余力,则来刷题!
  * 博客链接:http://blog.csdn.net/hurmishine
  *
*/
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long LL;
const int maxn=50+5;
char a[maxn][maxn];
LL dp[maxn][maxn];
int n,m;
LL GCD(LL x,LL y)
{
    if(y==0)
        return x;
    return GCD(y,x%y);
}
int main()
{
    //freopen("C:\\Documents and Settings\\Administrator\\桌面\\data.txt","r",stdin);
    while(cin>>n>>m)
    {
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<=i;j++)
                cin>>a[i][j];
        }
        memset(dp,0,sizeof(dp));
        LL maxx=(LL)1<<n;
        dp[0][0]=maxx;
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<=i;j++)
            {
                if(a[i][j]=='*')
                {
                    dp[i+1][j]+=dp[i][j]/2;
                    dp[i+1][j+1]+=dp[i][j]/2;
                }
                else
                {
                    dp[i+2][j+1]+=dp[i][j];
                    //dp[i][j]=0;
                }
            }
        }
        /**
        for(int i=0;i<=n;i++)
        {
            for(int j=0;j<=i;j++)
                cout<<dp[i][j]<<" ";
            cout<<endl;
        }
        */
        //cout<<dp[n][m]<<endl;
        LL gcd=GCD(maxx,dp[n][m]);
        cout<<dp[n][m]/gcd<<"/"<<maxx/gcd<<endl;
    }
    return 0;
}



  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值