《github一天一道算法题》:分治法求数组最大连续子序列和

原创 2014年11月05日 21:29:34

看书、思考、写代码!

/***************************************
 * copyright@hustyangju 
 * blog: http://blog.csdn.net/hustyangju 
 * 题目:分治法求数组最大连续子序列和
 * 思路:分解成子问题+合并答案
 * 时间复杂度:O(n lgn)
 * 空间复杂度:O(1) 
***************************************/
#include <iostream>

using namespace std;

template<class type>
class max_subarray
{
public:
    max_subarray(type *p):_p(p){}
    ~max_subarray(){}
    type max_aside_subarray(int s,int e);
protected:
    type max_cross_subarray(int s,int m,int e);
    type _max(type a,type b,type c);
private:
    type *_p;
};

template<class type>
type max_subarray<type>::_max(type a, type b, type c)
{
    if((a>=b)&&(a>=c))
        return a;
    else if((b>=a)&&(b>=c))
        return b;
    else
        return c;
}

template<class type>
type max_subarray<type>::max_cross_subarray(int s, int m, int e)
{
    type left_sum=*(_p+m);
    type right_sum=*(_p+m+1);
    for(int i=m;i>=s;i--)
    {
        type sum=0;
        sum+=*(_p+i);
        if(sum>left_sum)
            left_sum=sum;
    }//for
    for(int i=m+1;i<=e;i++)
    {
        type sum=0;
        sum+=*(_p+i);
        if(sum>right_sum)
            right_sum=sum;
    }//for
    return(left_sum+right_sum);
}

template<class type>
type max_subarray<type>::max_aside_subarray(int s, int e)
{
    int m=0;
    type left_sum,right_sum,cross_sum;
    if(s==e)
        return(*(_p+s));
    else
        m=int((s+e)/2);
    left_sum=max_aside_subarray(s,m);
    cross_sum=max_cross_subarray(s,m,e);
    right_sum=max_aside_subarray(m+1,e);
    return _max(left_sum,cross_sum,right_sum);
}

int main()
{
            int array1[10]={1,-2,-3,4,5,6,-7,-8,9,10};
           // float array2[10]={1.0,-2.0,-3.0,4.0,5.2,6.0,-7.0,-8.0,9.0,-10.0};
            max_subarray<int> mysubarray1(array1);
            //max_subarray<float>mysubarray2(array2);
            cout<<"max sum of sub array is: ";
            cout<<mysubarray1.max_aside_subarray(0,9)<<endl;
           // cout<<"max sum of sub array is: ";
            //cout<<mysubarray2.max_aside_subarray(0,9)<<endl;
}




相关文章推荐

《github一天一道算法题》:插入排序

看书、思考、写代码! /*********************************************** * copyright@hustyangju * blog: http://b...

分治法求最大子序列和问题

求下面序列的最大子序列和: 4   -3    5     2    -1     2      6     -2 对于这个例子,最大子序列和可能在三处出现。 1.整个出现在输入数据的左半部。 2.整...

用分治法求最大子序列问题,时间复杂度O(N*logN)

package Test; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream...

分治法求最大子序列

假设序列为a[10] = {4,-3,5,-2,-1,2,6,-2,3} 算法思想 采用二分策略 我们知道,最大子序列出现的可能只有三种:1. 只出现在前半部分;2. 只出现在后半部分;3. 横跨...
  • lvjing2
  • lvjing2
  • 2013年11月02日 14:57
  • 1417

JAVA实践分治法最大连续子序列求和

前言最大连续子序列求和是指给定一串数字,算出一段连续的数字能求得的最大和。实现功能给定一串数字3, -4, 2, 5, 9, -3, 7, 9求连续的子序列的最大和3, -4, [2, 5, 9, -...

uva 1400 Ray, Pass me the dishes!(线段树, 分治法求最大连续和)

参照RJ大大的代码写的。非常经典的一题!!!

「算法导论」:分治法求最大子数组

时间复杂度:o(nlgn)

算法_分治法求最大子数组

1.分治策略思想在于复杂的问题分解为简单的子问题进行求解 2.将一些问题抽象为最大子数组问题并加以解决在现实中是非常实用的   比如,我们想从一段时间的股票价格变化曲线图中计算出其买进股票和卖出股票的...

《github一天一道算法题》:动态规划法解决最长公共子序列(LCS)问题的最简单方法

/* * copyleft@hustyangju * 问题:longest common subsequece problem * 思路:从底往上,利用动态规划,划分子问题,利用LCS子问题的长...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:《github一天一道算法题》:分治法求数组最大连续子序列和
举报原因:
原因补充:

(最多只允许输入30个字)