关闭

傅里叶变换和各种变换

144人阅读 评论(0) 收藏 举报
分类:

在自然科学和工程技术中,为把较复杂的运算简单化, 人们常常采用所谓

变换的方法来达到目的 .如十七世纪, 航海和天文学积累了大批观察数据, 需

要对它们进行大量的乘除运算 .在当时, 这是非常繁重的工作, 为了克服这个

困难,1614 年纳皮尔(Napier)发明了对数, 对数有性质:ln( xy) = ln x + ln y,

ln( x/ y) = ln x - ln y .它将乘除运算转化为加减运算 .随后人们造出了以 e 为

底和以 10 为底的对数表,通过两次查表, 便完成了这艰巨的任务 .十八世纪,

微积分学中,人们通过微分、积分运算求解物体的运动方程 .到了十九世纪英

国著名的无线电工程师海维赛德(Heaviside)为了求解电工学、物理学领域中

的线性微分方程,逐步形成了一种所谓的符号法 .后来就演变成了今天的积分

变换法 .即通过积分运算把一个函数变成另一个函数 .同时, 将函数的微积分

运算转化为代数运算, 把复杂, 耗时的运算简单、快速完成 .如 f( t)为某具有

实变量的实值函数,经过积分变换 F 得到与 f( t)一一对应的具有实(或复)变

量的函数 F(ω) .反之, F(ω) 经过积分变换 F

- 1

得到一一对应的 f ( t) .而F [ f′( t)] = iωF(ω) , F [ ∫t- ∞f( t)d t] =1

iω F(ω)

F [ f′( t)] = iωF(ω) , F [ ∫

t

- ∞

f( t)d t] =

1

iω F(ω) , 故将 f( t)的微积分运算

经过积分变换转化为 F(ω)的代数运算,再由 F(ω)的运算结果经积分逆变换

便得到 f( t)的微积分运算结果 .本篇着重介绍两种最常用的积分变换:傅里

叶积分变换和拉普拉斯积分变换 .这两种积分变换不仅在数学的许多分支中,

而且在其它学科如振动力学,电工学, 无线电技术领域中都有着广泛的应用,

它们已成为这些学科领域中不可缺少的运算工具 


待完善,,,,,,,

码个鸡,如果你要搞定三大变换,请看信号与系统一书,大概600多页吧,我还是那句话,人的生命是有限的,不要把年轻来的生命浪费在你用不到的地方。

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:44679次
    • 积分:1213
    • 等级:
    • 排名:千里之外
    • 原创:85篇
    • 转载:13篇
    • 译文:0篇
    • 评论:3条
    文章分类