傅里叶变换和各种变换

原创 2016年05月30日 13:55:44

在自然科学和工程技术中,为把较复杂的运算简单化, 人们常常采用所谓

变换的方法来达到目的 .如十七世纪, 航海和天文学积累了大批观察数据, 需

要对它们进行大量的乘除运算 .在当时, 这是非常繁重的工作, 为了克服这个

困难,1614 年纳皮尔(Napier)发明了对数, 对数有性质:ln( xy) = ln x + ln y,

ln( x/ y) = ln x - ln y .它将乘除运算转化为加减运算 .随后人们造出了以 e 为

底和以 10 为底的对数表,通过两次查表, 便完成了这艰巨的任务 .十八世纪,

微积分学中,人们通过微分、积分运算求解物体的运动方程 .到了十九世纪英

国著名的无线电工程师海维赛德(Heaviside)为了求解电工学、物理学领域中

的线性微分方程,逐步形成了一种所谓的符号法 .后来就演变成了今天的积分

变换法 .即通过积分运算把一个函数变成另一个函数 .同时, 将函数的微积分

运算转化为代数运算, 把复杂, 耗时的运算简单、快速完成 .如 f( t)为某具有

实变量的实值函数,经过积分变换 F 得到与 f( t)一一对应的具有实(或复)变

量的函数 F(ω) .反之, F(ω) 经过积分变换 F

- 1

得到一一对应的 f ( t) .而F [ f′( t)] = iωF(ω) , F [ ∫t- ∞f( t)d t] =1

iω F(ω)

F [ f′( t)] = iωF(ω) , F [ ∫

t

- ∞

f( t)d t] =

1

iω F(ω) , 故将 f( t)的微积分运算

经过积分变换转化为 F(ω)的代数运算,再由 F(ω)的运算结果经积分逆变换

便得到 f( t)的微积分运算结果 .本篇着重介绍两种最常用的积分变换:傅里

叶积分变换和拉普拉斯积分变换 .这两种积分变换不仅在数学的许多分支中,

而且在其它学科如振动力学,电工学, 无线电技术领域中都有着广泛的应用,

它们已成为这些学科领域中不可缺少的运算工具 


待完善,,,,,,,

码个鸡,如果你要搞定三大变换,请看信号与系统一书,大概600多页吧,我还是那句话,人的生命是有限的,不要把年轻来的生命浪费在你用不到的地方。

版权声明:本文为博主原创文章,未经博主允许不得转载。

Gabor 变换详解

Gabor变换属于加窗傅立叶变换,Gabor函数可以在频域不同尺度、不同方向上提取相关的特征。另外Gabor函数与人眼的生物作用相仿,所以经常用作纹理识别上,并取得了较好的效果。 Gabor变换是短...
  • kezunhai
  • kezunhai
  • 2014年09月12日 15:24
  • 856

算法系列之二十四:离散傅立叶变换之音频播放与均衡器

导语 在算法系列的第二十二篇,我们介绍了离散傅立叶变换算法的实现,将时域的音频信号转换到频域进行分析,获取拨号音频的频率特征。这一篇我们将介绍一种频域均衡器的实现方法,所谓的频域均衡器,就是在频域...
  • orbit
  • orbit
  • 2015年05月04日 20:06
  • 12301

FFT(快速傅立叶算法 for java)

package com.test.test2; public class FFT {     public static final int FFT_N_LOG = 10; // FFT_N_LO...
  • QQ635785620
  • QQ635785620
  • 2013年08月19日 15:43
  • 9465

音频之傅里叶变换的一些资料

不管读到这里的您从事何种工作,我保证您都能看懂,并且一定将体会到通过傅里叶分析看到世界另一个样子时的快感。至于对于已经有一定基础的朋友,也希望不要看到会的地方就急忙往后翻,仔细读一定会有新的发现。...
  • baixiaozhe
  • baixiaozhe
  • 2016年04月15日 16:04
  • 2848

FFT(快速傅立叶算法 for java)

public class FFT {        public static final int FFT_N_LOG = 10; // FFT_N_LOG     public static ...
  • anhuidelinger
  • anhuidelinger
  • 2013年12月06日 13:51
  • 1348

图像 快速傅里叶变换 及 频率域滤波 java 实现

用java实现图像的快速傅里叶变换及频率域滤波
  • cloudray8580
  • cloudray8580
  • 2014年12月02日 11:34
  • 2341

Gabor变换

Gabor变换属于加窗傅立叶变换,Gabor函数可以在频域不同尺度、不同方向上提取相关的特征。另外Gabor函数与人眼的生物作用相仿,所以经常用作纹理识别上,并取得了较好的效果。Gabor变换是短时F...
  • u013360881
  • u013360881
  • 2014年11月03日 09:42
  • 793

Gabor 变换

http://blog.sina.com.cn/s/blog_48a242d601000a3j.html Gabor变换属于加窗傅立叶变换,Gabor函数可以在频域不同尺度、不同方向上提取相关的特征。...
  • Augusdi
  • Augusdi
  • 2013年09月06日 15:53
  • 18255

连续傅里叶变换,拉普拉斯变换之间的关系以及理解

连续傅里叶变换,拉普拉斯变换之间的关系以及理解
  • jacke121
  • jacke121
  • 2017年10月05日 23:56
  • 336

傅里叶变换拉普拉斯变换的物理解释及区别

傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。 ...
  • kevinhg
  • kevinhg
  • 2011年09月06日 16:09
  • 11081
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:傅里叶变换和各种变换
举报原因:
原因补充:

(最多只允许输入30个字)