数据仓库指南

原创 2001年08月28日 12:35:00
 

数据仓库学习心得<?xml:namespace prefix = o ns = "urn:schemas-microsoft-com:office:office" />

一.概念

1.数据仓库:是指面向主题的,一致的,不同时间的,稳定的数据集合,用于支持经营管理中的决策支持过程。从广义上讲数据仓库是指存储大量历史数据的数据库。每一个记录代表特殊时间点上的一个数据。

它是一种把收集的各种数据转变成有商业价值的信息技术,并把收集的信息体现在报告中。包括收集数据,过滤数据,存储数据,之后把数据应用于分析、报告等应用程序。

2.数据仓库目标:确认数据结构,寻找趋势,辅助决策,为经营管理提供决策信息。

3..DSS:决策支持过程。

4.数据仓库组成部分:数据市场,关系型数据库,数据源,数据准备,种服务工具

5.维度:

6.多维:

7.聚合:获取并集中一个群体或总和的结构.聚合是在一个多维层次内移动数据的概念.

9.类别:为类别和区分特定数据而分类的,在一个维度内,为提供详细分类系统而定义的分类.

10.详细类别:一个维度内最底层的分类.

11.分解与合成:

12.指标量:

13OLAP:联机分析

14OLTP联机事务处理

二.数据模型规范化

1.  概念:

规范化:是一个正规的方法,它应用一套规则使属性和实体相关联。

实体:是一个主要的数据对象,对用户至关重要。它通常是将被记录在数据库中的一个人、一个地点、一样东西或者一件事情。
属性:实体包括属性,属性就是特征,修饰成分、质量、数量或者特性。

范式:规范化由几个能够减少褓以获得更满意的物理我的步骤组成,这些步骤称为范式。

第一范式:一个不包含重复列的表归于第一范式。

第二范式:如果一个表归于第一范式且只包含依赖于主键的列,则归于第二范式。

第三范式:如果一个表归于第二范式且只包含那些非传递性地依赖于主键的列,则归于第三范式。

二.信息需求建模:

1.自上而下建模方法:利用具体数据元素,将这些元素组织到各个维度与指标中,

2.自下而上建模方法:从用户的观点设计,优点是设计者可以转纸一个通常主题或商务领域运

3.开发. 是自上而下与自下而上的方法的结合.

4.举例:销售收入应从预算和实际等角度表示.

指标:产品销售的实际收入,产品销售的预算收,产品销售的估计收

维度:已经销售的产品.

三.设计数据仓库,经常询部用户的几个问题?

1.用户所在部门承担的任务

2.用户在部门中承担的任务

3.为完成任务,用户需哪些报表

4.目前从何处获取这些信息?

5.得到信息如何处理?

6.信息是应用户需要产生的,还是在定期报表中产生的?

7.用户把信息输入到过工作表中吗?以便进一步分析吗?

8.怎样处理这些信息才算及时?

信息包的编制:

 

    信息包:________________________

    维度:____________________________________________

<?xml:namespace prefix = v ns = "urn:schemas-microsoft-com:vml" />

 类别:

  指标(预测销售,实际销售,预测偏差)

 

 


 

 

    

 

 

 

四.建立多维数据模型

要建立多维数据库:

1.  选择用来分析被建模主题的商业过程。

建模主题:比如想通过产品线和地区分析消费者的购买倾向来制订市场策略,此时数据模型主题就是“销售”。

2.  确定事实表的粒度。

事实表粒度通常代表每一个相关维的最底层。选择以“天”为粒度,就表示“时间维”中的每一记录代表一天。

3.  区分每一个事实表的维和层。

已定义的粒度与维相关。

4.  区分事实表的度量。

度量不仅包括数据本身,而且包括你从已存在的数据计算得到的新值。当设计数据模型时,必须做出决策:是否储存事实表里的计算结果或在运行阶段获得这些值。如:比值。

5.  确定每一个维表的属性。

一般情况下,定义的每一个维表属性的数量,应该保持最小。

6.  让用户验证数据模型。

 欢迎您给我发Email       , 让我们共同进步。

mailto: hxflx@sina.com          hxflx@163.com   lixing@neusoft.com

 

《数据仓库工具箱:维度建模的完全指南》笔记总结

此篇是关于本书的读书笔记总结,因为在这方面的理解还是比较初级的状态,有误之处还望指教。   个人认为这本书对于数据仓库的建模思路有一个很明确的描述:围绕事实表建立维度表。对数据仓库的建设有关键步骤...
  • linpingta
  • linpingta
  • 2014年01月01日 22:06
  • 2468

读《数据仓库工具箱:维度建模的完全指南》之第三章数据仓库总线矩阵

Data Warehouse Bus MatrixThe tool we use to create, document, and communicate the bus architecture i...
  • laou2008
  • laou2008
  • 2009年05月01日 00:16
  • 1591

数据仓库解决方案指南(摘要)

数据仓库的概念 任何一个公司和企业,在订货、存货清单、票据清单、帐目清算、客户服务以及财务报告等方面都存在大量的业务应用和技术环节。数据仓库的作用在于:从这些应用系统中获取信息并转换到一个新的数据库,...
  • hennry66
  • hennry66
  • 2008年08月19日 18:28
  • 555

mysql数据仓库指南

前言 欢迎使用  mysql多维数据仓库指南。     数据仓库可以通过集成各种多样的数据实现信息的统一,这些数据来源包括现行的事务操作和管理信息系统,以及外部各种信息源。这些源数据将被整合,清洗...
  • u014514671
  • u014514671
  • 2014年06月15日 16:44
  • 1059

数据仓库两种解决方案

http://lxw1234.com/archives/2015/08/471.htm http://lxw1234.com/archives/2016/02/609.htm
  • xiaoshunzi111
  • xiaoshunzi111
  • 2016年07月08日 17:30
  • 6051

数据仓库的架构与设计

公司之前的数据都是直接传到Hdfs上进行操作,没有一个数据仓库,趁着最近空出几台服务器,搭了个简陋的数据仓库,这里记录一下数据仓库的一些知识。涉及的主要内容有: 什么是数据仓库? 数据仓...
  • Trigl
  • Trigl
  • 2017年04月01日 17:52
  • 7607

数据仓库定义及特点

数据仓库之父Bill Inmon在1991年出版的“Building the Data Warehouse”一书中所提出的定义被广泛接受:数据仓库(Data Warehouse)是一个面向主题的(S...
  • u013412535
  • u013412535
  • 2015年04月26日 18:26
  • 3074

数据仓库(四):设计数据仓库--Inmon方法

(注意:本文参考的是Inmon的著作,因此主要介绍数据仓库设计的Inmon方法,即关系模型;关于维度模型,即Kimball方法可以参考本系列(二)(五)(六)等) 建数据仓库主要包括两部分工作:与操...
  • kingzone_2008
  • kingzone_2008
  • 2013年05月04日 00:30
  • 7701

数据仓库系统的运维优化

Apsara Clouder大数据专项技能认证:数据仓库系统的运维优化 数据仓库系统的运维优化是企业数据仓库系统构建完成后主要的工作之一,是数据仓库系统高质量的为内、外客户提供数据需求的重要保...
  • lsj960922
  • lsj960922
  • 2017年11月29日 14:08
  • 85

数据仓库基础术语名词一览

冰山查询――iceberg query  在数据仓库领域有一个概念叫Iceberg query,中文一般翻译为“冰山查询”。冰山查询在一个属性或属性集上计算一个聚集函数,以找出大于某个指定阈值的聚集值...
  • nisjlvhudy
  • nisjlvhudy
  • 2015年08月09日 09:36
  • 3193
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:数据仓库指南
举报原因:
原因补充:

(最多只允许输入30个字)