scala数据结构和算法-08-堆排序

原创 2017年01月03日 16:45:07

二叉堆满足二个特性:

1.父结点的键值总是大于或等于(小于或等于)任何一个子节点的键值。

2.每个结点的左子树和右子树都是一个二叉堆(都是最大堆或最小堆)。

当父结点的键值总是大于或等于任何一个子节点的键值时为最大堆。当父结点的键值总是小于或等于任何一个子节点的键值时为最小堆。下图展示一个最小堆:

由于其它几种堆(二项式堆,斐波纳契堆等)用的较少,一般将二叉堆就简称为堆。

堆的存储

一般都用数组来表示堆,i结点的父结点下标就为(i – 1) / 2。它的左右子结点下标分别为2 * i + 1和2 * i + 2。如第0个结点左右子结点下标分别为1和2。

package data

import scala.collection.mutable.ListBuffer

object HeapSort {
  def buildHeap[T](comparator:(T,T)=>Boolean)(source:ListBuffer[T],parent:Int){
    if(left(parent)>=source.length){
      return 
    }else{
      buildHeap(comparator)(source,left(parent));
    }
    if(right(parent)>=source.length){
      return
    }else{
      buildHeap(comparator)(source,right(parent));
    }
    if(comparator(source(left(parent)),source(parent))
        &&comparator(source(right(parent)),source(parent))){
      if(comparator(source(left(parent)),source(right(parent)))){
        val p=source(parent)
        source(parent)=source(left(parent))
        source(left(parent))=p
        buildHeap(comparator)(source,left(parent))
      }else{
        val p=source(parent)
        source(parent)=source(right(parent))
        source(right(parent))=p
        buildHeap(comparator)(source,right(parent))
      }
    }else if(comparator(source(left(parent)),source(parent))){
      val p=source(parent)
        source(parent)=source(left(parent))
        source(left(parent))=p
        buildHeap(comparator)(source,left(parent))
    }else if(comparator(source(right(parent)),source(parent))){
      val p=source(parent)
        source(parent)=source(right(parent))
        source(right(parent))=p
        buildHeap(comparator)(source,right(parent))
    }
    
    
  }
  
  def left(parent:Int)={
    parent*2+1
  }
  
  def right(parent:Int)={
    parent*2+2
  }
  
  def heapfye[T](comparator:(T,T)=>Boolean)(source:ListBuffer[T],parent:Int,rightIndex:Int){
    if(left(parent)>rightIndex){
      return 
    }
    /*if(right(parent)>rightIndex){
      return
    }*/
    if(left(parent)<=rightIndex&&right(parent)>rightIndex){
       if(comparator(source(left(parent)),source(parent))){
          val p=source(parent)
            source(parent)=source(left(parent))
            source(left(parent))=p
            heapfye(comparator)(source,left(parent),rightIndex)
        }
    }else{
        if(comparator(source(left(parent)),source(parent))
            &&comparator(source(right(parent)),source(parent))){
          if(comparator(source(left(parent)),source(right(parent)))){
            val p=source(parent)
            source(parent)=source(left(parent))
            source(left(parent))=p
            heapfye(comparator)(source,left(parent),rightIndex)
          }else{
            val p=source(parent)
            source(parent)=source(right(parent))
            source(right(parent))=p
            heapfye(comparator)(source,right(parent),rightIndex)
          }
        }else if(comparator(source(left(parent)),source(parent))){
          val p=source(parent)
            source(parent)=source(left(parent))
            source(left(parent))=p
            heapfye(comparator)(source,left(parent),rightIndex)
        }else if(comparator(source(right(parent)),source(parent))){
          val p=source(parent)
            source(parent)=source(right(parent))
            source(right(parent))=p
            heapfye(comparator)(source,right(parent),rightIndex)
        }
    }
  }
  
  def heapSort[T](comparator:(T,T)=>Boolean)(source:ListBuffer[T],rightIndex:Int):ListBuffer[T]={
    for(i<-(1 until source.length).reverse){
      val tmp=source(i)
      source(i)=source(0)
      source(0)=tmp;
      heapfye(comparator)(source,0,i-1)
    }
    source
  }
  def main(args: Array[String]): Unit = {
    val source=ListBuffer(3,1,4,9,5,8,7)
    buildHeap[Int](_>_)(source,0)
    println(source.mkString(",")) 
    println(heapSort[Int](_>_)(source,source.length-1).mkString(","))
  }
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

scala数据结构和算法-01-用scala实现合并排序

package data import scala.collection.mutable.ListBuffer import scala.util.control.Breaks object Me...
  • hxpjava1
  • hxpjava1
  • 2016年12月30日 21:20
  • 370

Scala 的数据结构

a、类型参数化 Scala 的类型参数化是指在定义类、函数时,参数的数据类型并不明确,需要在创建具体的实例或调用函数时才可以确定,这时,可以用一个占位符(通常为A ~ Z中的单个字符)来替代,这类似于...
  • qiruiduni
  • qiruiduni
  • 2015年07月06日 10:52
  • 1237

scala数据结构之List列表

XML Code  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ...
  • lyzx_in_csdn
  • lyzx_in_csdn
  • 2017年12月12日 08:48
  • 19

scala数据结构之Set和Map

XML Code  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ...
  • lyzx_in_csdn
  • lyzx_in_csdn
  • 2017年12月12日 08:56
  • 27

JAVA经典问题算法大全之scala版

/*【程序1】 题目:古典问题:有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? 1.程序分析: 兔子的规律为数列1...
  • chx3515
  • chx3515
  • 2015年04月05日 22:00
  • 763

Scala学习(3)——集合(基本数据结构)

本文要解决的问题:Spark主要是由Scala语言编写而成的,所以要真正深入了解Spark,必须要熟悉Scala,在此结合阅读《Scala编程》这本书的情况,对Scala语言做一个基本的总结,本篇文章...
  • sbq63683210
  • sbq63683210
  • 2016年07月15日 22:08
  • 512

Google核心技术之——PageRank算法scala实现

PageRank算法简述常言道,看一个人怎样,看他有什么朋友就知道了。也就是说,一个人有着越多牛X朋友的人,他是牛X的概率就越大。将这个知识迁移到网页上就是“被越多优质的网页所指的网页,它是优质的概率...
  • pztyz314151
  • pztyz314151
  • 2016年08月04日 17:10
  • 1914

决策树 算法 实例 scala

young myope no reduced no lenses young myope no normal soft young myope yes reduc...
  • mlljava1111
  • mlljava1111
  • 2016年01月20日 20:34
  • 1093

【scala 数据结构和算法】Scala实现:冒泡排序

算法原理:1、比较相邻的元素。如果第一个比第二个大,就交换他们两个。 2、对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。 3、针对所有的元素重复...
  • u013421629
  • u013421629
  • 2017年12月18日 16:27
  • 74

【scala 数据结构和算法】Scala实现:归并排序

一、归并排序算法思想归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完...
  • u013421629
  • u013421629
  • 2017年12月19日 15:36
  • 45
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:scala数据结构和算法-08-堆排序
举报原因:
原因补充:

(最多只允许输入30个字)