scala数据结构和算法-08-堆排序

原创 2017年01月03日 16:45:07

二叉堆满足二个特性:

1.父结点的键值总是大于或等于(小于或等于)任何一个子节点的键值。

2.每个结点的左子树和右子树都是一个二叉堆(都是最大堆或最小堆)。

当父结点的键值总是大于或等于任何一个子节点的键值时为最大堆。当父结点的键值总是小于或等于任何一个子节点的键值时为最小堆。下图展示一个最小堆:

由于其它几种堆(二项式堆,斐波纳契堆等)用的较少,一般将二叉堆就简称为堆。

堆的存储

一般都用数组来表示堆,i结点的父结点下标就为(i – 1) / 2。它的左右子结点下标分别为2 * i + 1和2 * i + 2。如第0个结点左右子结点下标分别为1和2。

package data

import scala.collection.mutable.ListBuffer

object HeapSort {
  def buildHeap[T](comparator:(T,T)=>Boolean)(source:ListBuffer[T],parent:Int){
    if(left(parent)>=source.length){
      return 
    }else{
      buildHeap(comparator)(source,left(parent));
    }
    if(right(parent)>=source.length){
      return
    }else{
      buildHeap(comparator)(source,right(parent));
    }
    if(comparator(source(left(parent)),source(parent))
        &&comparator(source(right(parent)),source(parent))){
      if(comparator(source(left(parent)),source(right(parent)))){
        val p=source(parent)
        source(parent)=source(left(parent))
        source(left(parent))=p
        buildHeap(comparator)(source,left(parent))
      }else{
        val p=source(parent)
        source(parent)=source(right(parent))
        source(right(parent))=p
        buildHeap(comparator)(source,right(parent))
      }
    }else if(comparator(source(left(parent)),source(parent))){
      val p=source(parent)
        source(parent)=source(left(parent))
        source(left(parent))=p
        buildHeap(comparator)(source,left(parent))
    }else if(comparator(source(right(parent)),source(parent))){
      val p=source(parent)
        source(parent)=source(right(parent))
        source(right(parent))=p
        buildHeap(comparator)(source,right(parent))
    }
    
    
  }
  
  def left(parent:Int)={
    parent*2+1
  }
  
  def right(parent:Int)={
    parent*2+2
  }
  
  def heapfye[T](comparator:(T,T)=>Boolean)(source:ListBuffer[T],parent:Int,rightIndex:Int){
    if(left(parent)>rightIndex){
      return 
    }
    /*if(right(parent)>rightIndex){
      return
    }*/
    if(left(parent)<=rightIndex&&right(parent)>rightIndex){
       if(comparator(source(left(parent)),source(parent))){
          val p=source(parent)
            source(parent)=source(left(parent))
            source(left(parent))=p
            heapfye(comparator)(source,left(parent),rightIndex)
        }
    }else{
        if(comparator(source(left(parent)),source(parent))
            &&comparator(source(right(parent)),source(parent))){
          if(comparator(source(left(parent)),source(right(parent)))){
            val p=source(parent)
            source(parent)=source(left(parent))
            source(left(parent))=p
            heapfye(comparator)(source,left(parent),rightIndex)
          }else{
            val p=source(parent)
            source(parent)=source(right(parent))
            source(right(parent))=p
            heapfye(comparator)(source,right(parent),rightIndex)
          }
        }else if(comparator(source(left(parent)),source(parent))){
          val p=source(parent)
            source(parent)=source(left(parent))
            source(left(parent))=p
            heapfye(comparator)(source,left(parent),rightIndex)
        }else if(comparator(source(right(parent)),source(parent))){
          val p=source(parent)
            source(parent)=source(right(parent))
            source(right(parent))=p
            heapfye(comparator)(source,right(parent),rightIndex)
        }
    }
  }
  
  def heapSort[T](comparator:(T,T)=>Boolean)(source:ListBuffer[T],rightIndex:Int):ListBuffer[T]={
    for(i<-(1 until source.length).reverse){
      val tmp=source(i)
      source(i)=source(0)
      source(0)=tmp;
      heapfye(comparator)(source,0,i-1)
    }
    source
  }
  def main(args: Array[String]): Unit = {
    val source=ListBuffer(3,1,4,9,5,8,7)
    buildHeap[Int](_>_)(source,0)
    println(source.mkString(",")) 
    println(heapSort[Int](_>_)(source,source.length-1).mkString(","))
  }
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Scala练习-堆排序

/** * 生成对结构 * * @param unSortHeap 任意数组 * @return 符合堆结构的数组 */ def generateHeap(...

scala数据结构和算法-02-用模式匹配实现合并排序

package data object MergeSortUsePattern { def mergeSort[T](compatator:(T,T)=>Boolean)(source:Lis...

scala数据结构和算法-01-用scala实现合并排序

package data import scala.collection.mutable.ListBuffer import scala.util.control.Breaks object Me...

用scala语言实现并行堆排序(top k)

因为项目需要对大量数据进行排序计算top k,开始了解并行计算框架,接触了spark,spark都是用scala写的,所以为了了解spark,恶补了一阵scala语言。 这是一种非常简练的函数式语言...
  • 10km
  • 10km
  • 2015-09-25 12:27
  • 1558

scala数据结构和算法-03-冒泡排序实现

package data import scala.collection.mutable.ListBuffer import scala.collection.mutable.ListBuffer ...

scala 排序算法 堆排序

package com.xing.hai /** * Created by xxxx on 2/23/2017. */ object OrderHeapSort extends App{ ...

Spark TopK 问题解决-使用最小堆

参考资料: 《Spark 大数据处理》 by 高彦杰整个排序取 TopK 的实现:object TopK0 { val K = 3 def main(args: Array[String]) {...

Scala学习8之排序算法比较和实现(scala)

排序算法比较和实现(scala)+查找 待完成: 插入排序 冒泡排序 希尔排序 快速排序 归并排序 直接选择排序 堆排序 桶排序 计数排序 基数排序 。。。
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)