关闭

EM(expectation maximization)理解以及推导过程

标签: 算法dataset
12962人阅读 评论(0) 收藏 举报
分类:

from :http://www.hxxiaopei.com/?p=26

最近在看topic model,引入主题隐含的状态,采用EM算法求解参数,所以先系统了解EM算法,感觉比较抽象,参照一些论文以及斯坦福的机器学习视频,整理一下自己的想法。

1.引入

给定一个数据集合DataSet,观察变量是X,隐藏变量为Z,如果概率模型的变量都是观察变量,则直接利用极大似然估计法估计模型参数l(θ)=maxθNi=1lnP(xi|θ),对l(θ)求导,采用牛顿法或者梯度下降法,求解参数。如果模型中存在隐含变量Z,则P(X|θ)=zP(X,z|θ)l(θ)=maxθNi=1lnzP(xi,z|θ),采用极大似然估计,对θ求导,无法获取其解析形式,不能直接获取其结果。EM算法就是含有隐藏变量的概率模型参数估计方法。

2.算法

概括性的介绍,无法直接对l(θ)=Ni=1lnzP(xi,z|θ)求解,利用jessen不等式以及convex函数的性质,求l(θ)的下界,通过求下界的极大值,得到模型参数, ,所以并不是获取算法的全局最优解,而是局部最优。

EM参考手册对算法过程进行详细的推导,斯坦福视频也有一个推导过程,我理解EM参考手册中的推导更自然,而斯坦福视频推导更简练,直接match最后的结果。

推导过程:

l(θ)

=i=1NlnzP(xi,z|θ)

=i=1NlnzQ(z)P(xi,z|θ)Q(z)

=i=1NlnE(P(xi,z|θ)Q(z))

i=1NE(lnP(xi,z|θ)Q(z))

=i=1NzQ(z)lnP(xi,z|θ)Q(z)

其中 Q(z)0 , zQ(z)=1

Q(z)是z的分布函数,可以理解为z的概率密度函数

jensen不等式,ln E(x) >= E(ln(x))

现在将l(θ的参数估计转换成对其下界 Ni=1zQ(z)lnP(xi,z|θ)Q(z)的参数估计问题。

需要确定等式什么时候成立,只有等式成立时,下界的极大值最接近原始问题,lnE(P(xi,z|θ)Q(z))=E(lnP(xi,z|θ)Q(z))。根据Ng介绍,应该是P(xi,z|θ)Q(z)=constant时,等式成立。

需要 Q(z)P(xi,z|θ),同时,又有zQ(z)=1,则

Q(z)=P(xi,z|θ)zP(xi,z|θ)

=P(xi,z|θ)P(xi|θ)

=P(z|xiθ)

由此可见,Q(z)是在观察变量已知的情况下z的分布函数,是xi给定时z的后验概率。在实际的计算中,EM为迭代算法,计算Q(z)时,观察变量以及参数θ都是已知的

EM算法:

在给定Q(z)的情况下,可以利用上面的公式计算出lθ的下界,Estep是确定Q(z),而M-step则是利用确定的Q(z)以及公式Ni=1zQ(z)lnP(xi,z|θ)Q(z)计算极大似然估计

所以EM算法是:

Repeat untile convergence {

E step:

Q(z)=P(z|xi;θ)

M step:

θ=argmaxθNi=1zQ(z)lnP(xi,z|θ)Q(z)

}

在实际是使用中,Q(z)=P(xi,z|θ)P(xi|θ)θ为t轮迭代的结果,也就是P(xi,z|θt)P(xi|θt)

这时M step θt+1=argmaxθNi=1zQ(z|θt)lnP(xi,z|θt)Q(z|θt)

关于EM算法的收敛性,不再介绍。

关于EM的例子,主要介绍mixture模型,比如gaussian mixture model,接下来整理topic model plsi时,作为对EM实例介绍。

备注:关于为什么引入Q(z),我理解是数学上的技巧,比较好的构造这个形式。通过观察其他的推导过程,最后也是引入Q(z),解释为z的后验概率

from :http://www.hxxiaopei.com/?p=26

 

3
1

猜你在找
【视频】C语言及程序设计(讲师:贺利坚)
【视频】Python爬虫工程师培养课程全套(讲师:韦玮)
【视频】Python全栈开发入门与实战(讲师:李杰)
【视频】2017软考网络规划设计师套餐(讲师:任铄)
【视频】2017软考软件设计师套餐(讲师:任铄)
【视频】2017软考信息系统项目管理师套餐(讲师:任铄)
【视频】软考(高级)项目经理实战营(讲师:张传波)
【视频】微信公众平台开发套餐(讲师:刘运强)
深度学习原理+实战+算法+主流框架套餐(讲师:唐宇迪)
2017系统集成项目管理工程师通关套餐(讲师:徐朋)
查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:364214次
    • 积分:4181
    • 等级:
    • 排名:第7056名
    • 原创:79篇
    • 转载:23篇
    • 译文:0篇
    • 评论:37条
    最新评论