NIO系列-01-传统BIO

本文介绍了使用Java BIO方式实现的时间服务器,包括服务端与客户端的代码实现。通过该实例展示了传统BIO模型的工作原理及局限性,如每新连接都需要创建新线程,导致资源消耗大,难以支撑大量并发连接。

声明

该系列文章由书籍《Netty权威指南》第二版整理而来。只为记录学习笔记。
若认为内容侵权请及时通知本人删除相关内容。

时间服务器–传统的BIO

服务端代码

public class TimeServer {

    public static void main(String[] args) throws IOException {
        int port = 1234;
        ServerSocket server = null;
        try {
            server = new ServerSocket(port);
            System.out.println("The time server is listening in port : " + port);
            Socket socket = null;
            while (true) {
                socket = server.accept();
                new Thread(new TimeServerHandler(socket)).start();
            }
        } finally {
            if (server != null) {
                System.out.println("The time server close");
                server.close();
                server = null;
            }
        }
    }
}
public class TimeServerHandler implements Runnable {

    private Socket socket;
    private SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");

    public TimeServerHandler(Socket socket) {
        this.socket = socket;
    }

    @Override
    public void run() {
        BufferedReader in = null;
        PrintWriter out = null;
        try {
            in = new BufferedReader(new InputStreamReader(this.socket.getInputStream()));
            out = new PrintWriter(this.socket.getOutputStream(), true);
            String body = null;
            while (true) {
                body = in.readLine();
                if (body == null)
                    break;
                out.println(this.sdf.format(new Date()));
            }

        } catch (Exception e) {
            if (in != null) {
                try {
                    in.close();
                } catch (IOException e1) {
                    e1.printStackTrace();
                }
            }
            if (out != null) {
                out.close();
                out = null;
            }
            if (this.socket != null) {
                try {
                    this.socket.close();
                } catch (IOException e1) {
                    e1.printStackTrace();
                }
            }
        }
    }
}

客户端代码

public class TimeClient {

    public static void main(String[] args) {

        int port = 1234;

        Socket socket = null;
        BufferedReader in = null;
        PrintWriter out = null;
        try {
            socket = new Socket("127.0.0.1", port);
            in = new BufferedReader(new InputStreamReader(socket.getInputStream()));
            out = new PrintWriter(socket.getOutputStream(), true);
            out.println("QUERY TIME ORDER");
            String resp = in.readLine();
            System.out.println("time:" + resp);
        } catch (Exception e) {
            e.printStackTrace();
        } finally {
            if (out != null) {
                out.close();
                out = null;
            }

            if (in != null) {
                try {
                    in.close();
                } catch (IOException e) {
                    e.printStackTrace();
                }
                in = null;
            }

            if (socket != null) {
                try {
                    socket.close();
                } catch (IOException e) {
                    e.printStackTrace();
                }
                socket = null;
            }
        }
    }
}

总结

这种传统的BIO模型有如下特点:

  • 新的客户端连接,服务端就要开启一个线程处理–服务器的资源开销不可控
  • 无法避免线程频繁创建/销毁的开销
  • 客户端连接数量太大很容易导致服务器奔溃

参考资料: 《Netty权威指南》第二版

内容概要:本文围绕基于模型预测控制(MPC)与滚动时域估计(MHE)集成的目标点镇定展开研究,重点探讨了在动态系统中如何通过MPC实现精确控制,同时利用MHE进行状态估计以提升系统鲁棒性和精度。文中结合Matlab代码实现,展示了MPC与MHE协同工作的算法流程、数学建模过程及仿真验证,尤其适用于存在噪声或部分可观测的复杂系统环境。该方法能够有效处理约束条件下的最优控制问题,并实时修正状态估计偏差,从而实现对目标点的稳定镇定。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的高校研究生、基于模型预测控制(MPC)与滚动时域估计(MHE)集成的目标点镇定研究(Matlab代码实现)科研人员及从事控制系统开发的工程技术人员;熟悉状态估计与最优控制相关概念的研究者更为适宜; 使用场景及目标:①应用于机器人控制、航空航天、智能制造等需要高精度状态估计与反馈控制的领域;②用于深入理解MPC与MHE的耦合机制及其在实际系统中的实现方式,提升对预测控制与状态估计算法的综合设计能力; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,重点关注MPC代价函数构建、约束处理、滚动优化过程以及MHE的滑动窗口估计机制,同时参考文中可能涉及的卡尔曼滤波、最小均方误差等辅助方法,系统掌握集成架构的设计思路与调参技巧。
内容概要:本文介绍了一种基于稀疏贝叶斯学习(SBL)的轴承故障诊断方法,提出两种群稀疏学习算法用于提取故障脉冲信号。第一种算法仅利用故障脉冲的群稀疏性,第二种进一步结合其周期性行为,以提升故障特征提取的准确性与鲁棒性。文档提供了完整的Matlab代码实现,适用于振动信号分析与早期故障检测,具有较强的工程应用价值。此外,文中还附带了多个科研领域的仿真资源链接,涵盖电力系统、信号处理、机器学习、路径规划等多个方向,突出MATLAB在科研仿真中的广泛应用。; 适合人群:具备一定信号处理或机械故障诊断基础,熟悉Matlab编程,从【轴承故障诊断】一种用于轴承故障诊断的稀疏贝叶斯学习(SBL),两种群稀疏学习算法来提取故障脉冲,第一种仅利用故障脉冲的群稀疏性,第二种则利用故障脉冲的额外周期性行为(Matlab代码实现)事科研或工程应用的研究生、工程师及科研人员;对智能诊断、稀疏表示、贝叶斯学习感兴趣的技术人员。; 使用场景及目标:①应用于旋转机械(如轴承、齿轮箱)的早期故障检测与健康监测;②研究群稀疏性与周期性先验在信号分离中的建模方法;③复现SBL算法并拓展至其他故障特征提取任务;④结合所提供的网盘资源开展相关领域仿真研究与算法开发。; 阅读建议:建议结合Matlab代码逐行理解算法实现细节,重点关注群稀疏建模与周期性约束的数学表达;推荐对比两种算法的实验结果以深入理解其性能差异;同时可利用提供的网盘资源拓展学习其他仿真技术,提升综合科研能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值