【YOLO学习】使用YOLO v2训练自己的数据

原创 2017年01月06日 23:19:47

说明

这篇文章是训练YOLO v2过程中的经验总结,我使用YOLO v2训练一组自己的数据,训练后的model,在阈值为.25的情况下,Recall值是95.54%,Precision 是97.27%。
需要注意的是,这一训练过程可能只对我自己的训练集有效,因为我是根据我这一训练集的特征来对YOLO代码进行修改,可能对你的数据集并不适用,所以仅供参考。

我的数据集

1,用于训练的数据集一共1003张图片和1003个与图片对应的标记信息(xml格式)。
2,图片的格式是 jpg,分辨率都是384*288,图片的命名从0000.jpg到1002.jpg,与VOC数据集的命名方式差不多。
3,标记信息的格式xml,命名从0000.xml到1002.xml,标记内容格式与VOC中标记信息的格式类似,某一xml中具体内容如下:

<annotation>
    <folder>Image</folder>
    <filename>0000</filename>
    <source>
        <database>Pedestrian_ultrared</database>
    </source>
    <size>
        <width>384</width>
        <height>288</height>
    </size>
    <object>
        <name>n00000001</name>
        <bndbox>
            <xmin>232</xmin>
            <xmax>248</xmax>
            <ymin>161</ymin>
            <ymax>203</ymax>
        </bndbox>
    </object>
</annotation>

4,一共1003组信息,选择900组用于训练(Train),103组用于验证(Validation)。
5,这个数据集只包含一个类别:人。当然也可以说是两个类别:人、背景。

我要训练的数据集的有以上这些特点,它数据的格式和VOC训练数据集的格式很相似,而YOLO v2默认是能够训练VOC数据集的。为了让YOLO v2能像训练VOC数据集一样训练我自己的数据集,我对代码进行以下三个方面的修改:
一:修改分类的个数:在代码中,默认VOC数据集是20类,而我要改成1类。
二:准备txt文档:VOC训练数据集中会自带几个txt文档,用来指明文件名或者路径地址,而如果你使用你自己的数据可能就需要自己生成这些文档。
三:修改代码中路径信息,把代码中VOC训练数据集的路径改成自己训练数据集的路径。

把20类改成1类

  1. cfg/voc.data文件中:

    • classes 改成1。
    • names=data/pasacal.names。
    • pasacal.names这一个文件要存在于darknet目录下的data文件夹里,没有的话可以自己在那个目录下创建一个pasacal.txt,加上内容之后,修改文件后缀名变成pasacal.names即可,当然名字和路径都可以自己定义。这个文件中的行数要和类数一致,每一行都是一个类别的名字。比如我的这一文件中就只有一行数据:“person”。这个文件在测试你训练的model的时候会用到,系统会在图片上画出bounding box,bounding box上面的文字,也就是这个框中物体的名字,应该就来自这个文件。
  2. cfg/yolo_voc.cfg文件中 :

    • 【region】层中 classes 改成1。
    • 【region】层上方第一个【convolution】层,其中的filters值要进行修改,改成(classes+ coords+ 1)* (NUM) ,我的情况中:(1+4+1)* 5=30,我把filters 的值改成了30。
    • 修改filters的建议来源自(https://groups.google.com/forum/#!topic/darknet/B4rSpOo84yg),我修改了之后一切正常。
  3. src/yolo.c 文件中 :

    • 位置大约第14行左右改成:char *voc_names={“n00000001”},原来里面有20类的名字,我改成了唯一1类的名字。
    • 位置大约第328行左右,修改draw_detection这个函数最后一个参数:20改成1。这个函数用于把系统检测出的框给画出来,并把画完框的图片传回第一个参数im中,用于保存和显示。
    • 位置大约第361行左右,demo函数中,倒数第三个参数我把20改成了1,虽然不知道有没有用,反正对结果没什么影响。
  4. src/yolo_kernels.cu 文件中 :

    • 位置第62行,draw_detection这个函数最后一个参数20改成1。
  5. scripts/voc_label.py 文件中 :

    • 位置第9行改成:classes=[“n00000001”],因为我只有一类。

准备txt文档

一共需要准备四个txt格式文档:train.txt与val.txt,infrared_train.txt与infrared_val.txt:

train.txt与val.txt
在生成infrared_train.txt与infrared_val.txt这两个文件时,会分别用到这两个文档。文档里包含了用于训练/验证的图片的名称,里面的数据组成很简单,每行都是一个图片的名称,并不包含图片的后缀(.jpg),比如文档中:
第一行是: 0000
第二行是: 0001
…..

生成脚本:creat_list.py:

#这个小脚本是用来打开图片文件所在文件夹,把前900个用于训练的图片的名称保存在tain.txt,后103个用于验证的图片保存在val.txt
import os
from os import listdir, getcwd
from os.path import join
if __name__ == '__main__':
    source_folder='/home/yolo_v2_tinydarknet/darknet/infrared/image/dout/'#地址是所有图片的保存地点
    dest='/home/yolo_v2_tinydarknet/darknet/infrared/train.txt' #保存train.txt的地址
    dest2='/home/yolo_v2_tinydarknet/darknet/infrared/val.txt'  #保存val.txt的地址
    file_list=os.listdir(source_folder)       #赋值图片所在文件夹的文件列表
    train_file=open(dest,'a')                 #打开文件
    val_file=open(dest2,'a')                  #打开文件
    for file_obj in file_list:                #访问文件列表中的每一个文件
        file_path=os.path.join(source_folder,file_obj) 
        #file_path保存每一个文件的完整路径
        file_name,file_extend=os.path.splitext(file_obj)
        #file_name 保存文件的名字,file_extend保存文件扩展名
        file_num=int(file_name) 
        #把每一个文件命str转换为 数字 int型 每一文件名字都是由四位数字组成的  如 0201 代表 201     高位补零  
        if(file_num<900):                     #保留900个文件用于训练
            #print file_num
            train_file.write(file_name+'\n')  #用于训练前900个的图片路径保存在train.txt里面,结尾加回车换行
        else :
            val_file.write(file_name+'\n')    #其余的文件保存在val.txt里面
    train_file.close()#关闭文件
    val_file.close()

infrared_train.txt与infrared_val.txt
这个文档用于告诉训练系统哪些图片是用来进行训练,哪些是用于验证的。
文档里包含了所有用于训练/验证的图片的完整路径,每一行都是一个图片的完整路径,例如
第一行是: /home/yolo_v2_tinydarknet/darknet/infrared/image/dout/0000.jpg
第二行是 :/home/yolo_v2_tinydarknet/darknet/infrared/image/dout/0001.jpg
…..

生成脚本:voc_label_change.py

#此脚本修改自voc_label.py。修改的原因是:我的训练集跟voc有些不同。
#由于数据集中包括用于训练的数据和用于验证的数据,所以此脚本可能需要分别对这两种数据各运行一次,对两种数据只需要简单地注释掉相应语句即可
#这个脚本需要train.txt ,这个文件是我用脚本creat_list.py生成的,保存了用于训练的图片的名字id,保存了用于训练的图片的名字
#这个脚本需要val.txt文件,这个文件是我用脚本creat_list.py生成的,保存了用于验证的图片的名字id,保存了用于验证的图片的名字
#这个脚本还需要xml格式的标签文件,我的训练集xml文件的格式与voc2007的类似,xml文件的名称与对应的用于训练的图片的名称相同
#这个脚本会生成 indrared_train.txt文件 ,用于保存每一用于训练的图片的完整的路径,随后会被voc.data yolo.c使用
#这个脚本会生成 indrared_val.txt文件 ,用于保存每一用于验证的图片的完整的路径,随后会被voc.data yolo.c使用
#这个脚本还会生成 txt格式的yolo可识别的标签文件,转换自每一个用于训练或验证的图片对应的xml文件,txt格式的文件名称与对应的xml文件名相同,但是内容不同,扩展名不同
#这个脚本 需要与图片对应的xml文件所在的地址,需要,转换后生成的txt的完整保存路径
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
#sets=[('2012', 'train'), ('2012', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test')] #按照自己的文件格式改的,不需要判断是那个voc数据包
classes = ["n00000001"]#因为我的数据集只有一个类别
def convert(size, box):#voc_label.py 自带的函数,没有修改
    dw = 1./size[0]
    dh = 1./size[1]
    x = (box[0] + box[1])/2.0
    y = (box[2] + box[3])/2.0
    w = box[1] - box[0]
    h = box[3] - box[2]
    x = x*dw
    w = w*dw
    y = y*dh
    h = h*dh
    return (x,y,w,h)
def convert_annotation(image_id):
    #in_file = open('VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id))
    in_file = open('/home/yolo_v2_tinydarknet/darknet/infrared/labels/dout_original/%s.xml'%(image_id))#与图片对应的xml文件所在的地址
    out_file = open('/home/yolo_v2_tinydarknet/darknet/infrared/labels/%s.txt'%(image_id),'w') #与此xml对应的转换后的txt,这个txt的保存完整路径
    tree=ET.parse(in_file)
    root = tree.getroot()
    size = root.find('size')  #访问size标签的数据
    w = int(size.find('width').text)#读取size标签中宽度的数据
    h = int(size.find('height').text)#读取size标签中高度的数据

    for obj in root.iter('object'):
       # difficult = obj.find('difficult').text   #由于自己的文件里面没有diffcult这一个标签,所以就屏蔽之
        cls = obj.find('name').text
        if cls not in classes :#or int(difficult) == 1:
            continue
        cls_id = classes.index(cls)
        xmlbox = obj.find('bndbox')   #访问boundbox标签的数据并进行处理,都按yolo自带的代码来,没有改动
        b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
        bb = convert((w,h), b)
        out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')

#image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split()  #之前代码是按照sets里面的字符来访问保存有图片名字的train或者val的txt文件
image_ids = open('/home/yolo_v2_tinydarknet/darknet/infrared/train.txt').read().strip().split()  #如果是训练集数据打开这一行,注释下一行
#image_ids = open('/home/yolo_v2_tinydarknet/darknet/infrared/val.txt').read().strip().split()  #如果是验证数据集数据打开这一行,注释上一行
#list_file = open('%s_%s.txt'%(year, image_set), 'w')
list_file = open('infrared_train.txt', 'w')     #把结果写入到indrared_train.txt文件中,如果是训练集数据打开这一行,注释下一行
#list_file = open('infrared_val.txt', 'w')     #把结果写入到indrared_train.txt文件中,如果是验证数据集数据打开这一行,注释上一行
for image_id in image_ids:
    #list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s.jpg\n'%(wd, year, image_id))
    list_file.write('/home/yolo_v2_tinydarknet/darknet/infrared/image/dout/%s.jpg\n'%(image_id))  #把每一用于训练或验证的图片的完整的路径写入到infrared_train.txt中  这个文件会被voc.data yolo.c调用
    convert_annotation(image_id)   #把图片的名称id传给函数,用于把此图片对应的xml中的数据转换成yolo要求的txt格式
list_file.close() #关闭文件

修改路径

  1. cfg/voc.data文件中:

    • train = /home/yolo_v2_tinydarknet/darknet/infrared/infrared_train.txt //infrared_train.txt的完整路径
    • valid = /home/yolo_v2_tinydarknet/darknet/infrared/infrared_val.txt //infrared_val.txt的完整路径
    • backup = /home/yolo_v2_tinydarknet/darknet/backup/ /* 这个路径是YOLO用于备份的,在训练过程中YOLO会不断地对产生的weights文件进行备份,darknet目录下就自带一个backup文件夹,这个路径指向那里。*/
  2. src/yolo.c 文件中:

    • train_yolo函数中:

      char *train_images =" /home/yolo_v2_tinydarknet/darknet/infrared/infrared_train.txt";//infrared_train.txt的完整路径
      char *backup_directory = "/home/yolo_v2_tinydarknet/darknet/backup/";//可以修改为自己的路径
    • validate_yolo函数中:

      char *base = "/home/yolo_v2_tinydarknet/darknet/results/comp4_det_test_";//可以修改自己的路径,好像是用于保存测试结果
      list *plist=get_paths("/home/yolo_v2_tinydarknet/darknet/infrared/infrared_val.txt");//infrared_val.txt的完整路径
    • validate_yolo_recall函数中:

      char *base = "/home/yolo_v2_tinydarknet/darknet/results/comp4_det_test_";//可以修改自己的路径
      list *plist = get_paths("/home/yolo_v2_tinydarknet/darknet/infrared/infrared_val.txt");//infrared_val.txt的完整路径
  3. src/detector.c 文件中:
    • 位置第375行改成:list *plist = get_paths(“/home/yolo_v2_tinydarknet/darknet/infrared/infrared_val.txt”);//改成infrared_val.txt的完整路径
    • 需要注意的是,这个文件里的validate_detector_recall函数是用来计算输出recall值的,后面会说。

对了,可能你注意到,输入到系统的infrared_train.txt或者infrared_val.txt都只是图片的完整路径,你也知道,要进行训练的话,除了需要图片还需要标记信息,然而标记信息仅仅用我的脚本voc_label_change.py从xml转换成了YOLO可识别的txt格式,但是它们的完整路径并没有输入进系统,那么系统该怎么找到它们呢?

因为在训练集中,一个图片文件和这一图片文件对应标记文件,他们俩除了后缀名之外其余的名称是一样的,所以src/yolo.c中有以下语句:

          find_replace(path, "dout", "labels", labelpath);
          find_replace(labelpath, "JPEGImages", "labels", labelpath);
          find_replace(labelpath, ".jpg", ".txt", labelpath);
          find_replace(labelpath, ".JPEG", ".txt", labelpath);

函数会找到路径中的图片后缀名.jpg,自动替换成.txt。比如:
/home/yolo_v2_tinydarknet/darknet/infrared/image/dout/0000.jpg
自动替换后变成了
/home/yolo_v2_tinydarknet/darknet/infrared/image/dout/0000.txt
所以在使用voc_label_new.py转换生成txt格式的标记信息之后,只需要把这些txt格式的标记文件复制到图片所在的目录下即可。系统根据替换后的路径地址来读取对应标记文件。

开始训练!

通过复杂地修改和准备,终于可以开始训练了
我是按照YOLO的官方指南来的,首先下载一个预训练的model(当然你也可以自己生成),放到darkent/目录下。
下载地址 (76 MB):http://pjreddie.com/media/files/darknet19_448.conv.23
然后运行指令:./darknet detector train cfg/voc.data cfg/yolo_voc.cfg darknet19_448.conv.23
就可以开始训练了,系统默认会迭代45000次,我花了一周时间才训练完。
当然迭代次数是可以修改的,应该是在cfg/yolo_voc.cfg修改max_batches的值就行。

评估性能

经过漫长的训练过程,model终于训练好了,为了评估性能,可以使用以下指令
./darknet detector recall cfg/voc.data cfg/yolo_voc.cfg backup/yolo_voc_final.weights

需要注意的是,在使用这个指令之前,我先修改一下src/detector.c 这一函数

  • 位置第375行改成:list *plist = get_paths(“/home/yolo_v2_tinydarknet/darknet/infrared/infrared_val.txt”);//改成infrared_val.txt的完整路径
  • 运行上面的指令会调用validate_detector_recall函数,这个函数中有个参数thresh(阈值),默认的值是.001,这个默认值设的很小,会让系统识别出更多的框来,导致proposals值激增,还会让recall值变高,达到98.5%。最终我改成了 .25。
  • 上面的函数只会显示出recall值,没有precision值,precision的值计算方法是:识别为正确的个数/画了多少个框,所以我修改了代码。我把第447行显示结果的代码修改为 :
fprintf(stderr, "ID:%5d Correct:%5d Total:%5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\t", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
fprintf(stderr, "proposals:%5d\tPrecision:%.2f%%\n",proposals,100.*correct/(float)proposals); 

我运行后显示的结果是:
…..
ID: 101 Correct: 106 Total: 111 RPs/Img: 1.07 IOU: 82.00% Recall:95.50% proposals: 109 Precision:97.25%
ID: 102 Correct: 107 Total: 112 RPs/Img: 1.07 IOU: 82.11% Recall:95.54% proposals: 110 Precision:97.27%

结果中的参数,我的理解是:

Correct :可以理解为正确地画了多少个框,遍历每张图片的Ground Truth,网络会预测出很多的框,对每一Groud Truth框与所有预测出的框计算IoU,在所有IoU中找一个最大值,如果最大值超过一个预设的阈值,则correct加一。

Total:一共有多少个Groud Truth框。

Rps/img:p 代表proposals, r 代表region。 意思就是平均下来每个图片会有预测出多少个框。预测框的决定条件是,预测某一类的概率大于阈值。在validation_yolo_recall函数中,默认的这一个阈值是0.001,这一阈值设置的比较低,这就会导致会预测出很多个框,但是这样做是可以提升recall的值,一般yolo用于画框的默认值是.25,使用这个阈值会让画出来的框比较准确。而validation_yolo_recall使用的阈值改成。25的时候,Rps/img 值会降低,recall的值会降低,所以validation_yolo_recall默认使用一个较低的阈值,有可能作者的目的就是为了提高recall值,想在某种程度上体现网络的识别精度比较高。

IoU、Recall、Precision:解释起来比较麻烦,请看我的博客有详细说明:
http://blog.csdn.net/hysteric314/article/details/54093734

要说的

1,这是我的经验总结,可能对你并没有意义,仅供参考。
2,如果你发现了错误,欢迎留言指正,多谢!
3,接下来一段时间可能要比较忙了,马上就要中期了,不过如果有新进展的话还会继续更新博客。
4,具体的YOLOv2的安装,教程很多,在这就不赘述了,可以参考他们的官网:http://pjreddie.com/darknet/yolo/
5,如果对YOLO感兴趣,可以跳墙去访问这个论坛,YOLO作者会亲自答疑:https://groups.google.com/forum/#!forum/darknet

版权声明:本文为博主原创文章,未经博主允许不得转载。

yolo训练自己的数据

转载:   http://blog.csdn.net/ch_liu23/article/details/53558549 最近在用yolo来做视频中的人员检测,选择YOLO是从速度考虑,当然也可...
  • langxing1992
  • langxing1992
  • 2017年05月14日 23:11
  • 2174

使用YOLO训练自己的数据样本经验总结

YOLO近一年多新出的一种object detection的方法,关于目标检测及YOLO的介绍可参见:基于深度学习的目标检测研究进展 , CVPR2016目标检测之识别效率篇:YOLO, G-CNN,...
  • NNNNNNNNNNNNY
  • NNNNNNNNNNNNY
  • 2016年11月03日 04:45
  • 10177

YOLO训练自己的数据集

很高兴现在已经有几百人通过我的教程成功地使用YOLO处理自己的数据集。最近一直在用CNN的模型做图像二分类,但苦于效果不佳,于是把图像分类问题转作目标识别问题。做目标识别选择了Yolo(you onl...
  • qq_34484472
  • qq_34484472
  • 2017年06月12日 19:09
  • 9098

yolo-darknet实现自己数据的train和test

有目共睹的是,yolo训练数据优点明显,训练检测速度超快,功能超强。因网上关于yolo训练自己数据的博客几乎没有,所以我就yolo训练自己数据做一具体操作流程,希望可以帮助大家,让大家对yolo不再陌...
  • samylee
  • samylee
  • 2016年06月21日 19:41
  • 21291

YOLO V2教程之训练自己的数据

1. yolo v2很多文件和v1不一样,而且迭代了很多个版,网上现有的V2教程里的src/yolo_kernels.cu已经没有了,这一步改动不用管   2. 教程:http://blog.cs...
  • eloise_29
  • eloise_29
  • 2017年04月17日 19:54
  • 4348

yolo的训练和测试

本文讲述用自己的数据集利用yolo进行训练
  • qq_30401249
  • qq_30401249
  • 2016年06月02日 11:06
  • 13247

yolo-darknet配置安装与测试

继caffe-fasterrcnn后,又一个yolo-darknet的配置教程,希望可以帮助大家。 注意:1、请严格按照我提供的安装顺序安装,即ubuntu-opencv2.4.10-darknet-...
  • samylee
  • samylee
  • 2016年06月15日 19:50
  • 21281

YOLOv2训练自己的数据集(VOC格式)

最近在用yolo来做视频中的人员检测,选择YOLO是从速度考虑,在训练数据集的过程中碰到很多坑,并且现在yolo又到了v2的版本,在网络和命令中都有区别...
  • ch_liu23
  • ch_liu23
  • 2016年12月10日 15:04
  • 15772

【Darknet】【yolo v2】训练自己数据集的一些心得----VOC格式

关于用yolo训练自己VOC格式数据的博文真的不少,但是当我按照他们的方法一步一步走下去的时候发现出了其他作者没有提及的问题。这里就我自己的经验讲讲如何训练自己的数据集。...
  • renhanchi
  • renhanchi
  • 2017年05月02日 10:02
  • 11158

用YOLOv2训练自己的数据集

一. 系统初始环境系统:Ubuntu16.04: ubuntu-16.04-desktop-amd64.isocuda安装文件: cuda-repo-ubuntu1604-8-0-local_8.0...
  • zhy8623080
  • zhy8623080
  • 2017年06月13日 17:08
  • 1721
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:【YOLO学习】使用YOLO v2训练自己的数据
举报原因:
原因补充:

(最多只允许输入30个字)