千万级的Mysql数据库与优化方法

原创 2015年07月07日 18:38:15

1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
  2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,
  Sql 代码 : select id from t where num is null;
  可以在 num 上设置默认值 0,确保表中 num 列没有 null 值,然后这样查询:
  Sql 代码 : select id from t where num=0;
  3.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
  4.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,
  Sql 代码 : select id from t where num=10 or num=20;
  可以这样查询:
  Sql 代码 : select id from t where num=10 union all select id from t where num=20;
  5.in 和 not in 也要慎用,否则会导致全表扫描,如:
  Sql 代码 : select id from t where num in(1,2,3);
  对于连续的数值,能用 between 就不要用 in 了:
  Sql 代码 : select id from t where num between 1 and 3;
  6.下面的查询也将导致全表扫描:
  Sql 代码 : select id from t where name like ‘c%’;
  若要提高效率,可以考虑全文检索。
  7.如果在 where 子句中使用参数,也会导致全表扫描。因为 SQL 只有在运行时才会解析局部变量,但优 化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然 而,如果在编译时建立访问计 划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
  Sql 代码 : select id from t where num=@num ;
  可以改为强制查询使用索引:
  Sql 代码 : select id from t with(index(索引名)) where num=@num ;
  8.应尽量避免在 where 子句中对字段进行表达式操作, 这将导致引擎放弃使用索引而进行全表扫描。
  Sql 代码 : select id from t where num/2=100;
  可以这样查询:
  Sql 代码 : select id from t where num=100*2;
  9.应尽量避免在 where 子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
  Sql 代码 : select id from t where substring(name,1,3)=’abc’;#name 以 abc 开头的 id
  应改为:
  Sql 代码 : select id from t where name like ‘abc%’;
  10.不要在 where 子句中的“=”左边进行函数、算术运算或其他表达式运算,否则系统将可能无法正确使用 索引。
  11.在使用索引字段作为条件时,如果该索引是复合索引,那么必须使用到该索引中的第一个字段作为条件 时才能保证系统使用该索引, 否则该索引将不会 被使用, 并且应尽可能的让字段顺序与索引顺序相一致。
  12.不要写一些没有意义的查询,如需要生成一个空表结构:
  Sql 代码 : select col1,col2 into #t from t where 1=0;
  这类代码不会返回任何结果集,但是会消耗系统资源的,应改成这样:
  Sql 代码 : create table #t(…);
  13.很多时候用 exists 代替 in 是一个好的选择:
  Sql 代码 : select num from a where num in(select num from b);
  用下面的语句替换:
  Sql 代码 : select num from a where exists(select 1 from b where num=a.num);
  14.并不是所有索引对查询都有效,SQL 是根据表中数据来进行查询优化的,当索引列有大量数据重复时, SQL 查询可能不会去利用索引,如一表中有字段 ,male、female 几乎各一半,那么即使在 上建 了索引也对查询效率起不了作用。
  15.索引并不是越多越好,索引固然可以提高相应的 select 的效率,但同时也降低了 insert 及 update 的效率,因为 insert 或 update 时有可能会重建索引,所以怎样建索引需要慎重考虑,视具体情况而定。一个表的索引数最好不要超过 6 个,若太多则应考虑一些不常使用到的列上建的索引是否有必要。
  16.应尽可能的避免更新 clustered 索引数据列, 因为 clustered 索引数据列的顺序就是表记录的物理存储顺序,一旦该列值改变将导致整个表记录的顺序的调整,会耗费相当大的资源。若应用系统需要频繁更新 clustered 索引数据列,那么需要考虑是否应将该索引建为 clustered 索引。
  17.尽量使用数字型字段,若只含数值信息的字段尽量不要设计为字符型,这会降低查询和连接的性能,并 会增加存储开销。这是因为引擎在处理查询和连接时会逐个比较字符串中每一个字符,而对于数字型而言 只需要比较一次就够了。
  18.尽可能的使用 varchar/nvarchar 代替 char/nchar , 因为首先变长字段存储空间小, 可以节省存储空间, 其次对于查询来说,在一个相对较小的字段内搜索效率显然要高些。
  19.任何地方都不要使用 select * from t ,用具体的字段列表代替“*”,不要返回用不到的任何字段。
  20.尽量使用表变量来代替临时表。如果表变量包含大量数据,请注意索引非常有限(只有主键索引)。
  21.避免频繁创建和删除临时表,以减少系统表资源的消耗。
  22.临时表并不是不可使用,适当地使用它们可以使某些例程更有效,例如,当需要重复引用大型表或常用 表中的某个数据集时。但是,对于一次性事件, 最好使用导出表。
  23.在新建临时表时,如果一次性插入数据量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果数据量不大,为了缓和系统表的资源,应先 create table,然后 insert.
  24.如果使用到了临时表, 在存储过程的最后务必将所有的临时表显式删除, 先 truncate table ,然后 drop table ,这样可以避免系统表的较长时间锁定。
  25.尽量避免使用游标,因为游标的效率较差,如果游标操作的数据超过 1 万行,那么就应该考虑改写。
  26.使用基于游标的方法或临时表方法之前,应先寻找基于集的解决方案来解决问题,基于集的方法通常更 有效。
  27.与临时表一样,游标并不是不可使用。对小型数据集使用 FAST_FORWARD 游标通常要优于其他逐行处理方法,尤其是在必须引用几个表才能获得所需的数据时。在结果集中包括“合计”的例程通常要比使用游标执行的速度快。如果开发时间允许,基于游标的方法和基于集的方法都可以尝试一下,看哪一种方法的效果更好。
  28.在所有的存储过程和触发器的开始处设置 SET NOCOUNT ON ,在结束时设置 SET NOCOUNT OFF .无需在执行存储过程和触发器的每个语句后向客户端发送 DONE_IN_PROC 消息。
  29.尽量避免大事务操作,提高系统并发能力。 sql 优化方法使用索引来更快地遍历表。 缺省情况下建立的索引是非群集索引,但有时它并不是最佳的。在非群集索引下,数据在物理上随机存放在数据页上。合理的索引设计要建立在对各种查询的分析和预测上。一般来说:
  a.有大量重复值、且经常有范围查询( > ,< ,> =,< =)和 order by、group by 发生的列,可考虑建立集群索引;
  b.经常同时存取多列,且每列都含有重复值可考虑建立组合索引;
  c.组合索引要尽量使关键查询形成索引覆盖,其前导列一定是使用最频繁的列。索引虽有助于提高性能但 不是索引越多越好,恰好相反过多的索引会导致系统低效。用户在表中每加进一个索引,维护索引集合就 要做相应的更新工作。
  补充:
  1、在海量查询时尽量少用格式转换。
  2、ORDER BY 和 GROPU BY:使用 ORDER BY 和 GROUP BY 短语,任何一种索引都有助于 SELECT 的性能提高。
  3、任何对列的操作都将导致表扫描,它包括数据库教程函数、计算表达式等等,查询时要尽可能将操作移 至等号右边。
  4、IN、OR 子句常会使用工作表,使索引失效。如果不产生大量重复值,可以考虑把子句拆开。拆开的子 句中应该包含索引。
  5、只要能满足你的需求,应尽可能使用更小的数据类型:例如使用 MEDIUMINT 代替 INT
  6、尽量把所有的列设置为 NOT NULL,如果你要保存 NULL,手动去设置它,而不是把它设为默认值。
  7、尽量少用 VARCHAR、TEXT、BLOB 类型
  8、如果你的数据只有你所知的少量的几个。最好使用 ENUM 类型
  9、正如 graymice 所讲的那样,建立索引

常见的几种优化方法

常见的几种最优化方法 1. 梯度下降法(Gradient Descent)   梯度下降法是最早最简单,也是最为常用的最优化方法。梯度下降法实现简单,当目标函数...
  • u012684062
  • u012684062
  • 2016年12月12日 11:27
  • 1001

常见的几种最优化方法

阅读目录 1. 梯度下降法(Gradient Descent) 2. 牛顿法和拟牛顿法(Newton's method & Quasi-Newton Methods) ...
  • u011596455
  • u011596455
  • 2016年12月03日 13:36
  • 2901

Web性能优化方法

如何提高web性能? 1、减少HTTP请求 一般来说要减少http请求通常从两个方面下手:减少图片的请求、减少脚本文件与样式表的请求 图片的减少通常有两种方式:css sprites、内联图片、...
  • u013372487
  • u013372487
  • 2015年12月17日 11:31
  • 1917

常见的几种最优化方法

参考:http://blog.csdn.net/majinlei121/article/details/47260917 http://mp.weixin.qq.com/s?__biz=MzI5NzA...
  • xbmatrix
  • xbmatrix
  • 2017年02月23日 21:55
  • 2528

几个优化方法

优化问题指的是,给定目标函数f(x),我们需要找到一组参数x,使得f(x)的值最小。 常见的几类优化算法有:梯度下降法(GD)、批量梯度下降法(BGD)、随机梯度下降法(SGD)、牛顿法、拟牛顿法、共...
  • bojackhosreman
  • bojackhosreman
  • 2017年04月01日 11:02
  • 1303

最优化方法--概述

最优化方法--概述 分类: mathematics2013-12-26 14:13 177人阅读 评论(0) 收藏 举报 最优化概述 目录(?)[+] ...
  • pi9nc
  • pi9nc
  • 2014年01月22日 12:20
  • 21634

几种常用的优化方法

1. 前言 熟悉机器学习的童鞋都知道,优化方法是其中一个非常重要的话题,最常见的情形就是利用目标函数的导数通过多次迭代来求解无约束最优化问题。实现简单,coding 方便,是训练模型的必备利器之一。...
  • u014568921
  • u014568921
  • 2015年06月17日 15:10
  • 4801

常见的神经网络的优化方法

上一篇博客使用了TF建立了一个基本的拥有一层隐含层的神经网络。我们感到激动不已!(- -!)不过(根据前人不断地试验和总结)神经网络有那么几个明显的缺点。我们接下来将对上一篇的代码进行适当修改,再进一...
  • longer_tju
  • longer_tju
  • 2017年07月16日 20:58
  • 279

谈谈常见的迭代优化方法

如果学习机器学习算法,你会发现,其实机器学习的过程大概就是定义一个模型的目标函数,然后通过优化算法从数据中求取J(θ)取得极值时对应模型参数θ的过程,而学习到的参数就对应于机器学习到的知识。不管学习到...
  • aws3217150
  • aws3217150
  • 2016年02月02日 09:54
  • 3820

**ML:机器学习中的最优化方法进阶

线性规划、整数规划、目标规划等方法其目标函数与约束条件都是决策变量的一次函数,全部为线性规划,具有统一的数学模型及如单纯形法这样的通用解法。1947年丹齐格(G.B.Dantzig)提出了线性规划的一...
  • wishchin
  • wishchin
  • 2015年12月24日 12:28
  • 2171
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:千万级的Mysql数据库与优化方法
举报原因:
原因补充:

(最多只允许输入30个字)