【第22期】观点:IT 行业加班,到底有没有价值?

并查集在kruskal算法中应用

原创 2015年11月19日 13:27:32

    在无向图论问题中,经常需要得到图的最小生成树,用于解决这个问题有两个经典算法:kruskal和prim,前者用于稀疏图,后者用于稠密图。kruskal算法的核心思想是贪心,按照权值顺序,先选取权值最小的边,再选取权值次小的边,依此类推,直到所选边足够把所有的点连接起来,这时边数为节点数-1。但有个选边的前提,那就是待选边不能和已选边组成回路。至此,kruskal算法要解决的问题便成了图的连通分支判断问题。而并查集正是用于求解该问题的有效方法。

    并查集是一种树形数据结构,其实现是定义一个长度为N+1(N为图的节点个数)的数组,数组元素值初始化为下标,表示所有的节点都初始化为由一个单点组成的树,每个节点都是自身的祖先。那么并查集如何判断两个连通分支是否是一个连通分支(即构成回路)呢?方法就是查找两棵树的祖先,如果祖先相同,则表示这两个连通分支是一个连通分支。除了查找,并查集还有一个方法用来合并两个连通分支,实现就是把A树(连通分支)的祖先设置为B树(连通分支)的祖先,反过来也行。

    kruskal算法通过不断地选边,然后查找这条边的两个节点所在的连通分支,再合并分支,最终得到了一颗最小生成树。算法的时间复杂度为O(NlogN)。

   JAVA实现如下:

public class Kruskal {
	
	/**
	 * 查找分支中某个元素的祖先,当祖先为自身时停止查找
	 * @param x
	 * @param branch
	 * @return
	 */
	public static int find(int x,int[] branch){
		while(x!=branch[x]){
			x = branch[x];
		}
		return x;
	}
	
	/**
	 * 合并分支,设branch[a]的祖先为b
	 * @param x
	 * @param branch
	 */
	public static void join(int a,int b,int[] branch){
		branch[a]=b;
	}
	
	public static void main(String args[]){
		Scanner in=new Scanner(System.in);
		//n表示节点数,m表示边数
		int n = in.nextInt();
		int m = in.nextInt();
		Edge[] edges = new Edge[m];
		Edge edge = null;
		//读入每条边的信息
		for(int i=0;i<m;i++){
			edge = new Edge();
			edge.a = in.nextInt();
			edge.b = in.nextInt();
			edge.w = in.nextInt();
			edges[i]=edge;
		}
		in.close();
		Arrays.sort(edges);
		
		/**
		 * 并查集初始化为N个分支,每个人都是自己的祖先
		 */
		int[] branch = new int[n+1];
		for(int i=0;i<=n;i++){
			branch[i]=i;
		}
		
		int selected = 0;
		int weightTotal = 0;
		
		//无需回溯
		for(int i=0;i<m && selected<n-1;i++){
			//查找两个结点的祖先
			int rootA = find(edges[i].a,branch);
			int rootB = find(edges[i].b,branch);
			if(rootA!=rootB){
				//合并两个分支,可以把A分支的祖先设为B分支的祖先,反之亦可
				join(rootA,rootB,branch);
				weightTotal += edges[i].w;
				selected ++;
			}
		}
		
		
		System.out.println(weightTotal);
	}
}

class Edge implements Comparable<Edge>{
	public int a;
	public int b;
	public int w;
	@Override
	public int compareTo(Edge e) {
		return this.w - e.w;
	}
}

版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

并查集及其简单应用:优化kruskal算法

并查集可以在较短的时间内进行集合的查找与合并。。有人ren'we

POJ 2560 Freckles 最小生成树 Kruskal+并查集使用

http://poj.org/problem?id=2560 本题跟其他题差不多,只不过节点的权重需要自己计算 Freckles Time Limit:10

并查集扩展之最小生成树Kruskal算法

并查集有很多经典的应用。在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中。 其中...

POJ 3522 变形kruskal算法及并查集的实现

此题对kruskal算法做了变形,不是求最小生成树,而是求最大边权值与最小边权值之差最小的生成树,同样可以用kruskal算法的实现方法,采用并查集。如果求最小生成树要将边加入到堆中,并且不需要遍历所有的生成树情况 //此题对kruskal算法做了变形,不是求最小生成树 //而是求最大边权值与最小边权值之差最小的生成树 //同样可以用kruskal算法的实现方法,采用并查集 #include &lt;iostream&gt; #includ

poj1861最小生成树(并查集)-kruskal算法

Kruskal算法是一种按网中边的权值递增的顺序构造最小生成树的方法。其基本思想是:设无向连通网为G(V,E),令G的最小生成树为T,其初态为T=(V,{}),即开始时,最小生成树T 由图G中的n个...
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)