一般线性规划问题的2阶段单纯形算法

     5、一般线性规划问题的2阶段单纯形算法 

     引入人工变量后的线性规划问题与原问题并不等价,除非所有zi都是0 。
    为了解决这个问题,在求解时必须分2个阶段进行。
    第一阶段用一个辅助目标函数替代原来的目标函数。
    这个线性规划问题称为原线性规划问题所相应的辅助线性规划问题。
    对辅助线性规划问题用单纯形算法求解。
    如果原线性规划问题有可行解,则辅助线性规划问题就有最优解,且其最优值为0,即所有zi都为0。
    在辅助线性规划问题最后的单纯形表中,所有zi均为非基本变量。
    划掉所有zi相应的列,剩下的就是只含xi和yi的约束标准型线性规划问题了。
    单纯形算法第一阶段的任务就是构造一个初始基本可行解。
    单纯形算法第二阶段的目标是求解由第一阶段导出的问题。
    此时要用原来的目标函数进行求解。
    如果在辅助线性规划问题最后的单纯形表中, zi不全为0,则原线性规划问题没有可行解,从而原线性规划问题无解。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 很抱歉,我不太确定您所指的“单纯形解决线性规划问题”的问题。不过,单纯形是一种经典的线性规划求解,主要分为两个阶段:第一阶段是将原始问题转化为标准型问题;第阶段是通过一系列的单纯形运算来逐步优化目标函数值,直至找到最优解。 具体来说,单纯形在每一次迭代中都会找到一个非基变量(即当前最优解中为0的变量),并将其作为入基变量(即从0变为正数)。接着,通过在约束条件中找到对应的限制最紧的变量(即使得目标函数值增加最小的变量),将其作为出基变量(即从正数变为0),从而更新最优解。 如果该迭代中无找到合适的非基变量作为入基变量,则说明已经找到了最优解,问题得到解决。 如果您有其他问题或需要进一步的解释,告诉我,我将尽力为您提供帮助。 ### 回答2: 单纯形是一种常用的解决线性规划问题的方,可以通过编写相关的代码来实现。 单纯形的基本思路是通过不断的迭代,找到合适的解。以下是一种简化的单纯形的代码示例: 1. 定义一个函数simplex_method(),接收线性规划的目标函数和约束条件作为输入。 2. 初始化初始基变量基底向量、非基变量向量、基变量值等参数。 3. 进入迭代过程,循环执行以下步骤直到满足终止条件: a. 根据基变量值和目标函数确定非基变量的取值。 b. 计算目标函数值。 c. 检查是否满足约束条件,如果满足则结束迭代,得到最优解。 d. 如果不满足约束条件,则根据离开变量和进入变量规则找到要交换的变量。 e. 更新基变量值,继续下一次迭代。 4. 返回最优解。 这只是一个简化的单纯形代码示例,实际实现过程中需要考虑更多的细节和优化。例如,需要处理边界条件、非可行解的情况,以及选择合适的进入变量和离开变量等等。 总之,单纯形是解决线性规划问题的一种有效方,编写相关的代码可以帮助我们自动化地求解这类问题,提高计算效率。 ### 回答3: 单纯形是一种常用的求解线性规划问题算法。下面我将给出一个简单的单纯形代码示例。 首先,我们需要导入numpy库,用于矩阵运算。代码如下: ```python import numpy as np ``` 然后,我们定义一个函数simplex来实现单纯形求解过程。该函数接收一个维数组A、一个一维数组b和一个一维数组c作为输入,分别表示线性规划问题中的系数矩阵、约束条件和目标函数。 ```python def simplex(A, b, c): m, n = A.shape # 添加人工变量 c = np.hstack((c, np.zeros(n))) A = np.hstack((A, np.eye(m))) # 构建初始单纯形表 B = np.arange(n, n + m) N = np.arange(n) T = np.concatenate((B, N)) Ab = np.hstack((A[:, B], b.reshape((m, 1)))) cB = c[B] cN = c[N] while True: # 计算单纯形的乘子 B_inv = np.linalg.inv(A[:, B]) y = np.dot(cB, B_inv) # 计算进入变量 delta = np.dot(y, A[:, N]) - cN if np.all(delta >= 0): # 单纯形结束 break q = np.argmax(delta) # 计算离开变量 d = np.dot(B_inv, A[:, N[q]]) # 检查是否无界 if np.all(d <= 0): # 无界解 return None p = np.argmin(np.where(d > 0, Ab[:, -1] / d, np.inf)) # 更新基变量和非基变量 B[p], N[q] = N[q], B[p] # 更新单纯形表 Ab[p, :] /= d[p] for i in range(m): if i != p: Ab[i, :] -= Ab[p, :] * d[i] cB = c[B] cN = c[N] # 提取基变量的解 x = np.zeros(n) for i, bi in enumerate(B): x[bi] = Ab[i, -1] return x ``` 最后,我们可以使用该函数来求解一个线性规划问题。代码示例如下: ```python A = np.array([[2, 1, -1], [1, -1, 1]]) b = np.array([2, 5]) c = np.array([1, 2, -3]) x = simplex(A, b, c) print("最优解:", x) ``` 在上述代码中,输入的系数矩阵A、约束条件b和目标函数c分别表示如下线性规划问题: ``` max: c^T * x A * x <= b x >= 0 ``` 程序会输出最优解x的值。注意,如果问题无界,则程序会输出None。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值