关闭

五子棋的人工智能算法

1242人阅读 评论(2) 收藏 举报
        以前曾研究过五子棋的人工智能算法,这篇文章就是讲的实现与原理。当然也只是做了最简单的研究,人工智能是个高深的学问,我基本上不懂,这里的实现也只是凭自己的感觉来写的,程序也不是我写的,但是原理就是这样。我相信还有高手,我的文章也只能提供给一些初学者看看了。

        电脑下子实际上是分两个步骤的,第一个步骤是尽可能的收集棋盘格局的信息,并且使这些信息以一定的格式存放再内存中,以便于第二步的处理。第二个步骤就是,对收集到的信息进行分析处理,即要给出一个规则,用穷举搜索的办法遍历所有收集到的信息,搜索的过程实际上是用所定下的规则去衡量每一点的权值,搜索的目的是为了找到一个权值最大的点,这个点就是当前的最优解,也就是应该下的子。

 

        具体的说来,在第一步中,可以用一个13×13的二维数组来存放棋盘上每一个点的信息。每下一步棋,就用一个13×13的二重循环去遍历棋盘上的每一个点,可以参照如下的方法,即对于每一个点,我们假定这个点放上黑子,这时候就判断这个黑子放上去后,会形成多少个活2、活3、活4和五,然后把对应的数值填入上面所说的二维数组里面,然后再假定这个点放白棋,又会形成多少个活2、活3、活4和五,也填入二维数组里面。当然你也可以用两个二维数组分别存储黑子和白子的情况,而且最好采用结构体数组。这样遍历完棋盘后,再数组里面就保存了有用的棋盘格局信息。如下:
typedef struct tagNodeInfo
{
    int numof2;
    int numof3;
    int numof4;
    int numof5;
}NodeInfo,*PNodeInfo;

NodeInfo WHITE_CHESS[13][13];
NodeInfo BLACK_CHESS[13][13];


        下面就是如何利用所得到的信息去下棋了。这个过程也是遍历分析所得的信息的过程。对上面的信息,我们可以很好的处理。比如,假定四三是必胜的,则我们给他的权值就很大比如100吧,而活二给的权值应该比较小,就给1吧。然后你可以得到一个权值的计算公式,比如: 权值=活二的个数×1+活三的个数×5+活四的个数×10+四三的个数×100,就是类似这样的公式,当然我上面是随便举的。

        下棋是就是遍历每一个点的信息,对每一个点计算权值,找到权值最大的就是要下的点了。上面说了用两个数组分别保存黑子和白子的信息也是有必要的,因为可以计算出某一点对黑白双方的重要程度。就是说如果轮到你下白子了,你光看哪一点对白子有利也不行呀,还要看那些点对黑子有利,并且要比较这种有利的程度。如果你放某一点能成活3,而别人放另一点就是四三了,你就要抢先吧那一点占了。

        当然这样的算法也仅仅是考虑了当前的最优解,如果要进一步提高人工智能,就要用更高级的搜索法,对未来的几步进行搜索了。一般都是将搜索空间组织成二叉树的结构。这个我学的也不是很好,所以就不讲了。

         实际上,上面讲的办法还具有一般意义,不光是可以用到五子棋,再其他的棋类里面也是这样的,先搜索信息,再分析。

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:34477次
    • 积分:492
    • 等级:
    • 排名:千里之外
    • 原创:11篇
    • 转载:21篇
    • 译文:1篇
    • 评论:3条
    最新评论
    优秀网站
    有用的网站