numpy multiply

原创 2016年08月29日 22:25:15

numpy.multiply(x1, x2[, out]) : Multiply arguments element-wise, 广播法则。


  • numpy的multiply和*什么区别
      Numpy matrices必须是2维的,但是numpy arrays (ndarrays) 可以是多维的(1D,2D,3D····ND). Matrix是Array的一个小的分支,包含于Array。所以matrix 拥有array的所有特性。

      在numpy中matrix的主要优势是:相对简单的乘法运算符号。例如,a和b是两个matrices,那么a*b,就是矩阵积。

      import numpy as np

      a=np.mat(‘4 3; 2 1’)
      b=np.mat(‘1 2; 3 4’)
      print(a)
      # [[4 3]
      # [2 1]]
      print(b)
      # [[1 2]
      # [3 4]]
      print(a*b)
      # [[13 20]
      # [ 5 8]]
      matrix 和 array 都可以通过在have.Tto return the transpose, but matrix objects also have.Hfor the conjugate transpose, and.Ifor the inverse.

      In contrast, numpy arrays consistently abide by the rule that operations are applied element-wise. Thus, if a and b are numpy arrays, then a*b is the array formed by multiplying the components element-wise:

      c=np.array([[4, 3], [2, 1]])
      d=np.array([[1, 2], [3, 4]])
      print(c*d)
      # [[4 6]
      # [6 4]]
      To obtain the result of matrix multiplication, you use np.dot :

      print(np.dot(c,d))
      # [[13 20]
      # [ 5 8]]
      The**operator also behaves differently:

      print(a**2)
      # [[22 15]
      # [10 7]]
      print(c**2)
      # [[16 9]
      # [ 4 1]]
      Sinceais a matrix,a**2returns the matrix producta*a. Sincecis an ndarray,c**2returns an ndarray with each component squared element-wise.

      There are other technical differences between matrix objects and ndarrays (having to do with np.ravel, item selection and sequence behavior).

      The main advantage of numpy arrays is that they are more general than 2-dimensional matrices. What happens when you want a 3-dimensional array? Then you have to use an ndarray, not a matrix object. Thus, learning to use matrix objects is more work – you have to learn matrix object operations, and ndarray operations.

      Writing a program that uses both matrices and arrays makes your life difficult because you have to keep track of what type of object your variables are, lest multiplication return something you don’t expect.

      In contrast, if you stick solely with ndarrays, then you can do everything matrix objects can do, and more, except with slightly different functions/notation.

      If you are willing to give up the visual appeal of numpy matrix product notation, then I think numpy arrays are definitely the way to go.

      PS. Of course, you really don’t have to choose one at the expense of the other, sincenp.asmatrixandnp.asarrayallow you to convert one to the other (as long as the array is 2-dimensional).

      One of the biggest practical differences for me of numpy ndarrays compared to numpy matrices or matrix languages like matlab, is that the dimension is not preserved in reduce operations. Matrices are always 2d, while the mean of an array, for example, has one dimension less.

      For example demean rows of a matrix or array:

      with matrix

      >>> m = np.mat([[1,2],[2,3]])
      >>> m
      matrix([[1, 2],
      [2, 3]])
      >>> mm = m.mean(1)
      >>> mm
      matrix([[ 1.5],
      [ 2.5]])
      >>> mm.shape
      (2, 1)
      >>> m - mm
      matrix([[-0.5, 0.5],
      [-0.5, 0.5]])
      with array

      >>> a = np.array([[1,2],[2,3]])
      >>> a
      array([[1, 2],
      [2, 3]])
      >>> am = a.mean(1)
      >>> am.shape
      (2,)
      >>> am
      array([ 1.5, 2.5])
      >>> a - am #wrong
      array([[-0.5, -0.5],
      [ 0.5, 0.5]])
      >>> a - am[:, np.newaxis] #right
      array([[-0.5, 0.5],
      [-0.5, 0.5]])
      I also think that mixing arrays and matrices gives rise to many “happy” debugging hours. However, scipy.sparse matrices are always matrices in terms of operators like multiplication.

版权声明:本文为博主原创文章,未经博主允许不得转载。

java学习笔记之成员/局部变量,封装,参数传递和构造函数

成员变量和局部变量区别: 1、 源代码中定义的位置不同。成员变量定义在类中,局部变量定义在方法中(只要是类的下一级大括号都是局部的) 2、 内存中的存储位置不同。成员变量存储在堆内存的对象中,局部变量...

《机器学习》学习笔记二

模型评估与选择2.1经验误差与过拟合 错误率(error rate):分类错误的样本数占样本总数的比例。E=a/mE=a/m 精度(accuracy):1−a/m1-a/m即精度=1−错误率精度=1-...

numpy中multiply函数怎么用

multiply(a,b)就是个乘法,如果a,b是两个数组,那么对应元素相乘 numpy.multiplynumpy.multiply(x1, x2[, out]) = Multiply arg...

【python学习笔记】23:numpy的add和multiply

add和multiply是numpy里比较常用的两种运算,分别是加法和乘法运算。 *加法运算>>> np.add.accumulate([1,2,3]) #累加 array([1, 3, 6], d...

multiply.c

  • 2015年02月03日 18:44
  • 599B
  • 下载

leetCode 43.Multiply Strings(高精度整数相乘) 解题思路和方法

Multiply Strings Given two numbers represented as strings, return multiplication of the numbers a...

解决编译时的multiply defination重复定义问题

今天写程序,碰到了一个头疼的问题,一直给我讲multiply defination of。。。很烦,我检查了好多遍,我明明有加#ifndef... 我定义的全局变量还是有重复定义的报错,百度了之...

HDU 3074 Multiply game(线段树 单点更新)

Multiply game Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

hdu 3074 Multiply game(线段树模板题) 解题报告

Multiply game Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...

3074 Multiply game(线段树求区间乘积)

Multiply gameProblem Description Tired of playing computer games, alpc23 is planning to play a game...
  • yqdjl6
  • yqdjl6
  • 2017年07月06日 18:29
  • 57
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:numpy multiply
举报原因:
原因补充:

(最多只允许输入30个字)