numpy * dot multiply

原创 2016年08月30日 16:06:06

有一点建议:当我们需要在python中进行像matlab中的矩阵运算时,最好将ndarray转化成matrix,以免出错

  • *
    需要记住的是: numpy arrays consistently abide by the rule that operations are applied element-wise. Thus, if a and b are numpy arrays, then a*b is the array formed by multiplying the components element-wise。
    即,对于ndarray, * 表示的是multiplying the components element-wise 必要时需要广播,举例:
>>> import numpy as np
>>> a = np.array(range(6)).reshape((2,3))                                                                                                                                                                     
>>> b = np.array([1,0,1])
>>> a
array([[0, 1, 2],
       [3, 4, 5]])
>>> b
array([1, 0, 1])
>>> c= a*b
>>> c
array([[0, 0, 2],
       [3, 0, 5]])
>>> d = a*b.T
>>> d
array([[0, 0, 2],
       [3, 0, 5]])
#按照广播规则进行广播,再进行multiplying the components element-wise

而对于matrix,* 则表示矩阵相乘,运算必须保证矩阵相乘的法则:

>>> A=np.matrix(a)
>>> B=np.matrix(b)
>>> A
matrix([[0, 1, 2],
        [3, 4, 5]])
>>> B
matrix([[1, 0, 1]])
>>> C=A*B
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/usr/lib/python2.7/dist-packages/numpy/matrixlib/defmatrix.py", line 341, in __mul__
    return N.dot(self, asmatrix(other))
ValueError: objects are not aligned
# 必须遵守矩阵相乘的法则
>>> C=A*B.T
>>> C
matrix([[2],
        [8]])

  • np.dot
    官方文档:Dot product of two arrays.
    For 2-D arrays it is equivalent to matrix multiplication, and for 1-D arrays to inner product of vectors (without complex conjugation). For N dimensions it is a sum product over the last axis of a and the second-to-last of b

所以对于ndarray ,一般情况下,都是进行矩阵乘法或者向量的内积运算。但这仅仅是等价于矩阵相乘,但等于就是矩阵相乘。对于ndarray,有时,dot的运算并不要求操作数像矩阵相乘的要求那么严格,当然相乘的结果的格式也不是矩阵,而是数组,举例:

>>> np.dot(a,b)
array([2, 8]) # a 2-D数组, b 1-D数组,不论b是否转置,得到的都得到相同的1-D数组
>>> np.dot(a,b.T)
array([2, 8])

但是对于matrix,矩阵相乘就是矩阵相乘,铁板丁丁,所以必须满足矩阵相乘的条件,举例:

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: objects are not aligned
>>> np.dot(A,B.T)
matrix([[2],
        [8]])
# 必须遵守矩阵相乘的法则, 相乘的结果也保证了格式还是矩阵

1. 总之, Matrix是Array的一个小的分支,包含于Array。
2. 所以matrix 拥有array的所有特性。对于2-D数组,dot等价与矩阵相乘
3. 对于matrix,* 和 dot都表示矩阵相乘,必须遵守矩阵相乘法则


  • multiply
    multiply是numpy的ufunc函数,执行方法是对应元素相乘,而不是线性代数中的矩阵运算方式,类似于matlab中的点乘,当矩阵的维度不相同时,会根据一定的广播规则将维数扩充到一致的形式. 如果不能广播相同的size,multiply就会失败,举例:
>>> np.multiply(a,b)                                                                                                                                                                                          
array([[0, 0, 2],
       [3, 0, 5]])
>>> np.multiply(a,b.T)
array([[0, 0, 2],
       [3, 0, 5]])
>>> np.multiply(A,B)                                                                                                                                                                                          
matrix([[0, 0, 2],
        [3, 0, 5]])
>>> np.multiply(A,B.T)                                                                                                                                                                                        
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: operands could not be broadcast together with shapes (2,3) (3,1) 
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

tensorflow and matric operation

ehttps://pypi.python.org/pypi/tensorflow install tensorflow in ubuntu14.04 first install anaconda,...

矩阵、向量微分计算

定义1. 梯度(Gradient)[标量对列向量微分] 设f(x)f(x)是一个变量为xx的标量函数,其中x=(x1...xN)Tx=(x_1...x_N)^T。那么定义f(x)f(x)对xx的梯度...

关于拉格朗日乘子法与KKT条件

转自 http://www.moozhi.com/topic/show/54a8a261c555c08b3d59d996 目录 拉格朗日乘子法的数学基础 共轭函数...

关于 numpy 中 multiply的用法

>>> import numpy as np >>> li = [1,2,3,4,5] >>> m1 = np.mat(li ) >>> m1 matrix([[1, 2, 3, 4, 5]]) >>...

Numpy基础笔记

Numpy(Numerical Python的简称)是高性能科学计算和数据分析的基础包。其部分功能如下: ndarray,一个具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组。 用于对整组数据...
  • hickai
  • hickai
  • 2014-04-11 11:17
  • 45846

简析Wolfe Dual (Wolfe对偶性原则)

note:对于这个过程的一个直观的理解就是利用直线族的包络,对于每个固定的x,都有一条对应的以lambda为参数的直线,那么所有的x实际上就是一个直线族,这个直线族在每个lambda截面上必定有极大和...

机器学习练习(五)—— 神经网络

这篇文章是一系列 Andrew Ng 在 Coursera 上的机器学习课程的练习的一部分。这篇文章的原始代码,练习文本,数据文件可从这里获得。
  • And_w
  • And_w
  • 2016-12-13 18:28
  • 966

numpy中multiply函数怎么用

multiply(a,b)就是个乘法,如果a,b是两个数组,那么对应元素相乘 numpy.multiplynumpy.multiply(x1, x2[, out]) = Multiply arg...

Python 中的几种矩阵乘法 np.dot, np.multiply, *

Python中的几种矩阵乘法1. 同线性代数中矩阵乘法的定义: np.dot()np.dot(A, B):对于二维矩阵,计算真正意义上的矩阵乘积,同线性代数中矩阵乘法的定义。对于一维矩阵,计算两者的内...

MATLAB计算矩阵间的欧式距离(不用循环!)

MATLAB编程题 题目描述:从一个NxM的矩阵C中找出与1xM的矩阵P欧氏距离最小的某一行row,要求不能用循环!!! 输入:矩阵C(NxM)、矩阵P(1xM) 输出:row 解题思...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)