poj3693(后缀数组+lcp+rmq)

求循环节个数最大的子串。

先穷举长度L,然后求长度为L 的子串最多能连续出现几次。首先连续出现1 次是肯定可以的,所以这里只考虑至少2 次的情况。假设在原字符串中连续出现2 次,记这个子字符串为S,那么S 肯定包括了字符r[0], r[L], r[L*2],r[L*3], ……中的某相邻的两个。所以只须看字符r[L*i]和r[L*(i+1)]往前和往后各能匹配到多远,记这个总长度为K,那么这里连续出现了K/L+1 次。

以上来自罗穗骞论文

往后匹配多远 r 用ST表求lcp即可。。。往前 l 就把串反过来再做一下。。

但是开头可以在[i-l,i-l+(l+r)mod len]区间内任取,我们要取字典序最小的,即rank最小的。再对rank做个st表就好了。

当然l也可以直接算。。想知道如何做的可以参看下别人的代码。。还有些细节见代码。

#include <cstdio>
#include <cstring>
#define inf 0x7fffffff
#define N 100005
inline int swap(int &x,int &y){int t=x;x=y;y=t;}
inline int min(int x,int y){return x<y?x:y;}
int tst=0,n,log[N],mx,ans,ansl,ansr,st[N][17];
char s[N];
inline void rmqini(int st[N][17],int a[]){
	for(int i=1;i<=n;++i) st[i][0]=a[i];
	for(int i=1;i<=log[n];++i)
		for(int j=1;j<=n;++j)
			if(j+(1<<(i-1))<=n)
				st[j][i]=min(st[j][i-1],st[j+(1<<(i-1))][i-1]);
			else break;
}
struct SA{
	int a[N],st[N][17];
	int sa[N],rank[N<<1],rank1[N],tmp[N],count[N],h[N];
	void ini(){
		memset(count,0,sizeof(count));
		memset(rank,0,sizeof(rank));
		for(int i=1;i<=n;++i) count[a[i]]=1;
		for(int i=1;i<=30;++i) count[i]+=count[i-1];
		for(int i=n;i>=1;--i) rank[i]=count[a[i]];
		int k=1;
		for(int p=1;k!=n;p<<=1){
			memset(count,0,sizeof(count));
			for(int i=1;i<=n;++i) count[rank[i+p]]++;
			for(int i=1;i<=n;++i) count[i]+=count[i-1];
			for(int i=n;i>=1;--i) tmp[count[rank[i+p]]--]=i;
			memset(count,0,sizeof(count));
			for(int i=1;i<=n;++i) count[rank[tmp[i]]]++;
			for(int i=1;i<=n;++i) count[i]+=count[i-1];
			for(int i=n;i>=1;--i) sa[count[rank[tmp[i]]]--]=tmp[i];
			memcpy(rank1,rank,sizeof(rank1));
			rank[sa[1]]=k=1;
			for(int i=2;i<=n;++i){
				if(rank1[sa[i]]!=rank1[sa[i-1]]||rank1[sa[i]+p]!=rank1[sa[i-1]+p]) ++k;
				rank[sa[i]]=k;
			}
		}k=0;
		for(int i=1;i<=n;++i){
			if(rank[i]==1){h[1]=0;continue;}
			if(i==1||h[rank[i-1]]<=1) k=0;
			if(k) --k;
			while(a[i+k]==a[sa[rank[i]-1]+k]) ++k;
			h[rank[i]]=k;
		}
		rmqini(st,h);
	}
	int lcp(int x,int y){
		int l=rank[x],r=rank[y];
		if(l>r) swap(l,r);l++;
		int k=log[r-l+1];
		return min(st[l][k],st[r-(1<<k)+1][k]);
	}
}c[2];
inline int rmq(int l,int r){
	int t=log[r-l+1];
	return min(st[l][t],st[r-(1<<t)+1][t]);
}
void cal(int len){
	int l=0,r=0;
	//至少两个循环节,那么s[i],s[i+len]...中至少有两个连续的相等。 
	for(int i=1;i+len<=n;i+=len)
		if(s[i]==s[i+len]){//向左向右扩展,lcp即为匹配的最远长度
			//正着做是求r,倒着做是求l 
			r=c[0].lcp(i,i+len);l=c[1].lcp(n-i+2,n-i-len+2);
			//(l+r+len)/len为连续出现次数 
			if((l+r)/len+1>mx) mx=(l+r)/len+1,ans=inf;
			if((l+r)/len+1==mx){
				//开头可以在[i-l,i-l+(l+r)mod len]区间任取,取rank最小的 
				int t=rmq(i-l,i-l+(l+r)%len);
				if(t<ans){
					ans=t;
					ansl=c[0].sa[t];ansr=ansl+mx*len-1;
				}
			}
		}
}
int main(){
//	freopen("a.in","r",stdin);
	log[0]=-1;for(int i=1;i<N;++i) log[i]=log[i>>1]+1;
	while(1){
		scanf("%s",s+1);
		if(s[1]=='#') break;
		printf("Case %d: ",++tst);
		n=strlen(s+1);//正着来一遍,倒着来一遍 
		for(int i=1;i<=n;++i) c[0].a[i]=s[i]-'a'+1,c[1].a[i]=s[n-i+1]-'a'+1;
		c[0].ini();c[1].ini();
		rmqini(st,c[0].rank);
		mx=1;ans=inf;//mx--最大循环节个数,ans--满足mx的字典序最小,即rank最小 
		for(int i=1;i<=n;++i)//mx==1 
			if(c[0].rank[i]<ans)
				ans=c[0].rank[i],ansl=ansr=i;
		for(int i=1;i<=n;++i) cal(i);//mx>1,以循环节长度枚举 
		for(int i=ansl;i<=ansr;++i) putchar(s[i]);puts("");
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值