关闭

动态规划1(老师的讲义,我拷下来的呵呵)

1304人阅读 评论(0) 收藏 举报

多阶段决策过程最优化问题

——动态规划的基本模型

在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。因此各个阶段决策的选取不能任意确定,它依赖于当前面临的状态,又影响以后的发展。当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线。这种把一个问题看做是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题称为多阶段决策最优化问题。
    【例题1】最短路径问题。图中给出了一个地图,地图中每个顶点代表一个城市,两个城市间的连线代表道路,连线上的数值代表道路的长度。现在,想从城市A到达城市E,怎样走路程最短,最短路程的长度是多少?

【分析】把从A到E的全过程分成四个阶段,用k表示阶段变量,第1阶段有一个初始状态A,两条可供选择的支路ABl、AB2;第2阶段有两个初始状态B1、 B2,B1有三条可供选择的支路,B2有两条可供选择的支路……。用dk(xk,xk+1)表示在第k阶段由初始状态xk到下阶段的初始状态xk+1的路径距离,Fk(xk)表示从第k阶段的xk到终点E的最短距离,利用倒推方法求解A到E的最短距离。具体计算过程如下:

    S1:K=4,有:F4(D1)=3,F4(D2)=4,F4(D3)=3
    S2: K=3,有:F3(C1)=min{d3(C1,D1)+F4(D1),d3(C1,D2)+F4(d2)}=min{8,10}=8
                 F3(C2)=d3(C2,D1)+f4(D1)=5+3=8
                 F3(C3)=d3(C3,D3)+f4(D3)=8+3=11
                 F3(C4)=d3(C4,D3)+f4(D3)=3+3=6
    S2: K=2,有:F2(B1)=min{d2(B1,C1)+F3(C1),d2(B1,C2)+f3(C2),d2(B1,C3)+F3(C3)}=min{9,12,14}=9
                 F2(m)=min{d2(B2,c2)+f3(C2),d2(B2,C4)+F3(C4)}=min{16,10}=10
    S4:k=1,有:F1(A)=min{d1(A,B1)+F2(B1),d1(A,B2)+F2(B2)}=min{13,13}=13
    因此由A点到E点的全过程的最短路径为A—>B2一>C4—>D3—>E。最短路程长度为13。
    从以上过程可以看出,每个阶段中,都求出本阶段的各个初始状态到过程终点E的最短路径和最短距离,当逆序倒推到过程起点A时,便得到了全过程的最短路径及最短距离,同时附带得到了一组最优结果(即各阶段的各状态到终点E的最优结果)。

在上例的多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化问题的方法为动态规划方法。

根据上例分析和动态规划的基本概念,可以得到动态规划的基本模型如下:
    (1)确定问题的决策对象。
    (2)对决策过程划分阶段。
    (3)对各阶段确定状态变量。
    (4)根据状态变量确定费用函数和目标函数。
    (5)建立各阶段状态变量的转移过程,确定状态转移方程。

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:10412次
    • 积分:133
    • 等级:
    • 排名:千里之外
    • 原创:3篇
    • 转载:4篇
    • 译文:0篇
    • 评论:1条
    文章存档
    最新评论