关闭

java实现归并算法

558人阅读 评论(0) 收藏 举报
class MergeSort implements SortStrategy 



{  private Comparable[] bridge; 




       
/** 



       *利用归并排序算法对数组obj进行排序 



       
*/
 



       
public void sort(Comparable[] obj) 



       
{   if (obj == null



              
{    throw new NullPointerException("The param can not be null!"); 



              }
 


              bridge 
= new Comparable[obj.length];                //初始化中间数组 


              mergeSort(obj, 
0, obj.length - 1);                       //归并排序 



              bridge 
= null



       }
 


       
/** 


       *将下标从left到right的数组进行归并排序 



       *
@param obj 要排序的数组的句柄 



       *
@param left 要排序的数组的第一个元素下标 



       *
@param right 要排序的数组的最后一个元素的下标 



       
*/
 



       
private void mergeSort(Comparable[] obj, int left, int right) 



       
{    if (left < right) 



              
{     int center = (left + right)/2



                     mergeSort(obj, left, center); 



                     mergeSort(obj, center 
+ 1, right); 



                     merge(obj, left, center, right); 



              }
 



       }
 





       
/** 



       *将两个对象数组进行归并,并使归并后为升序。归并前两个数组分别有序 



       *
@param obj 对象数组的句柄 



       *
@param left 左数组的第一个元素的下标 



       *
@param center 左数组的最后一个元素的下标 



       *
@param right 右数组的最后一个元素的下标 



       
*/
 



       
private void merge(Comparable[] obj, int left, int center, int right) 



       
{   int mid = center + 1



              
int third = left; 



              
int tmp = left; 



              
while (left <= center && mid <= right) 



              
{     //从两个数组中取出小的放入中间数组 



                     
if (obj[left].compareTo(obj[mid]) <= 0



                     
{      bridge[third++= obj[left++]; 



                     }
    else 



                            bridge[third
++= obj[mid++]; 



              }
 


              
//剩余部分依次置入中间数组 


              
while (mid <= right) 



              
{  bridge[third++= obj[mid++]; 



              }
 


              
while (left <= center) 


              
{    bridge[third++= obj[left++]; 



              }
 


              
//将中间数组的内容拷贝回原数组 


              copy(obj, tmp, right); 



       }
 


       
/** 


       *将中间数组bridge中的内容拷贝到原数组中 



       *
@param obj 原数组的句柄 



       *
@param left 要拷贝的第一个元素的下标 



       *
@param right 要拷贝的最后一个元素的下标 



       
*/
 



       
private void copy(Comparable[] obj, int left, int right) 



       
{   while (left <= right) 



              
{   obj[left] = bridge[left]; 



                     left
++



              }
 }
 



}


 

归并算法是分治算法思想的一个应用实例。

The divide-and-conquer paradigm involves three steps at each level of the recursion:
Divide the problem into a number of subproblems.
Conquer the subproblems by solving them recursively. If the subproblem sizes are
small enough, however, just solve the subproblems in a straightforward manner.
Combine the solutions to the subproblems into the solution for the original problem.


The merge sort algorithm closely follows the divide-and-conquer paradigm. Intuitively, it
operates as follows.
Divide: Divide the n-element sequence to be sorted into two subsequences of n/2
elements each.
Conquer: Sort the two subsequences recursively using merge sort.
Combine: Merge the two sorted subsequences to produce the sorted answer.

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:67181次
    • 积分:862
    • 等级:
    • 排名:千里之外
    • 原创:18篇
    • 转载:4篇
    • 译文:0篇
    • 评论:26条
    最新评论