关闭

循环报数问题

标签: 游戏算法
1675人阅读 评论(1) 收藏 举报
分类:

/*
有N个人按照1到N编号围成一个圈做游戏,从第一个人开始从1报数,数到M的人退出游戏,他后面的人接着重新从1开始报数.问最后剩下的人是几号?
这个问题被称为约瑟夫(josephus)环问题。
最容易想到的方法是用一个循环链表来模拟游戏,直到最后只剩下1人.则可得到他的号码.
这种算法的空间复杂度是 O(N)
时间复杂度是 O(N*M)


下面给出一种算法,空间复杂度为 O(1),时间复杂度为 O(N)
这里只考虑M>=2的情况.

设总数为n的时候J(n,M)
则在总数是 n+1 的时候,第一次数到M,将减去1,以后的过程将和总数为n的情况一样。
所以 J(n+1,M) = (M+J(n,M))%(n+1)
这里的结果以0为基数,转换成以1为基数Josephus(M,N) = J(M,N) + 1;
显然:
如果 N=1 最后剩下的就是1号
所以
Josephus(1,M) = 1
J(1,M) = 0

示例程序:
*/
#include "stdafx.h"

long Josephus1(long N,long M);
long Josephus2(long N,long M);

int _tmain(int argc, _TCHAR* argv[])
{
 long N = 5;
 long M = 3;
 long Px1 = Josephus1(N,M);
 long Px2 = Josephus2(N,M);
 return 0;
}


//用循环
long J1(long N,long M)
{
 long k=0;
 for(long n=2;n<=N;n++)
 {
  k=(k+M)%n;
 }
 return k;
}


long Josephus1(long N,long M)
{
 return J1(N,M)+1;
}

// 用第归
long J2(long n,long M)
{
if(n==1) return 0;
else return (M+J2(n-1,M))%n;
}

long Josephus2(long N,long M)
{
 return J2(N,M) + 1;
}

 


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:147727次
    • 积分:2687
    • 等级:
    • 排名:第13428名
    • 原创:106篇
    • 转载:19篇
    • 译文:0篇
    • 评论:15条
    文章分类
    最新评论