关闭

椭圆曲线密码算法介绍

标签: 算法加密
920人阅读 评论(0) 收藏 举报
分类:

1,有限域上的椭圆曲线 
设K表示一个有限域,E是域K上的椭圆曲线,则E是一个点的集合: 
E/K = { ( x, y ) | y2+ a1xy + a3y = x3 + a2x2 + a4x + a6, 
a1, a3, a2, a4, a6 x, y K } { O } 
其中O表示无穷远点。 
在E上定义‘+’运算,P + Q = R,R是过P、Q的直线与曲线的另一交点关于x轴的对称点,当P = Q时R是P点的切线与曲线的另一交点关于 x轴的对称点。这样,( E, + )构成可换群( Abel群),O是加法单位元(零元)。椭圆曲线离散对数问题ECDLP定义如下:给定定义在K上的 椭圆曲线E,一个n阶的点P E/K,和点Q E/ K,如果存在l,确定整数l, 0 l n - 1, Q = lP。前面已经提到,ECDLP是比 因子分解难得多的问题。 
椭圆曲线上的加法: P + Q = R 
椭圆曲线上一点的2倍: P + P = R. 


2,椭圆曲线上的密码算法 
基于该难题,Neal Koblitz[13] 和Victor Miller[14]在1985年分别利用有限域上椭圆曲线的点构成的群实现了离散对 数密码算法,其中被广泛接受的是椭圆曲线上的DSA,称ECDSA。随即展开了椭圆曲线密码学研究,除椭圆曲线外,还有人提出在其它类型的曲线如超椭圆曲 线上实现公钥密码算法。 
此后,有人在椭圆曲线上实现了类似ElGamal的加密算法,以及可恢复明文的数字签名方案。除有限域上的椭圆曲线密码算法外,人们还探索了在椭圆曲线上实现RSA算法,如KMOV等,笔者也设计了一种算法(“一种基于Z/nZ上椭圆曲线的公钥密码算法”,王汉强、魏庆福,通信学报,1999,第7期)。 


3,椭圆曲线密码算法的发展 
由于其自身优点,椭圆曲线密码学一出现便受到关注。现在密码学界普遍认为它将替代RSA成为通用的公钥密码算法,SET ( Secure Electronic Transactions )协议的制定者已把它作为下一代SET协议中缺省的公钥密码算法,目前已成为研究的 热点,是很有前途的研究方向。

 
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:3762081次
    • 积分:60887
    • 等级:
    • 排名:第42名
    • 原创:1549篇
    • 转载:1252篇
    • 译文:0篇
    • 评论:459条
    最新评论