深度学习在graph上的应用

转载请标明出处: 本文要介绍的这一篇paper是ICML2016上一篇关于 CNN 在图(graph)上的应用。ICML 是机器学习方面的顶级会议,这篇文章-->--所研究的内容也具有非常好的理论和实用的价值。如果您对于图的数据结构并不是很熟悉建议您先参考本文末的相关基础知识的介绍。 CNN已经在计算机视觉(CV)以及自然语言处理等领域取得了state-of-art 的水平,其中的数据可以被称作是...
阅读(116) 评论(0)

深度学习目标检测:RCNN,Fast,Faster,YOLO,SSD比较

这篇博文很简单,我就画了一个图,将各自的要点进行比较说明。相信这样看过去就一目了然了,但是需要说明的还是: YOLO可能不应该放在这里,但是为了和SSD进行比较还是放了。另外,YOLO出了第二版本了,所以放在这边也没有问题。iker Peng2017年1月10日...
阅读(3027) 评论(1)

深度强化学习系列(三)Value iteration Network

今天这个歪楼以下,插播今年NIPS的最佳论文,也是强化学习的一篇论文,叫做 Value iteration Network.这一篇强化学习的论文是为了解决 强化学习当中泛化能力差的问题,为了解决这个问题,引入了一个 Learn to plan 的模块。本文的最大创新:在一般性的策略(Policy representation)表示当中加入了一个 规划模块(Planing module)。作者认为加...
阅读(2115) 评论(3)

深度强化学习系列(二):强化学习基础

本文是强化学习的基础,主要参考 Divid Silver 教程,Reinforcement Learning:An Introduction,以及周志华的西瓜书。可能之前大家已经听过了强化学习的介绍,因此,我首先问几个问题:强化学习和MDP过程是一回事吗?强化学习和监督学习的区别是什么?什么是值迭代,什么是策略迭代?有模型和无模型的强化学习的各自有什么样的学习方法?强化学习和深度学习其实很早就有了...
阅读(2021) 评论(0)

深度强化学习系列(一):强化学习概述

深度强化学习系列之一,深度强化学习概述...
阅读(3141) 评论(3)

逻辑回归(Logistic Regression)

这篇文章的整个推导都很清楚,转过来! 逻辑回归(Logistic Regression) 转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/         本文主要讲解分类问题中的逻辑回归。逻辑回归是一个二分类问题。   二分类问题     二分类问题是指预测的y值只有两个取值(0或1),二分类问题可以扩展到多分类问题。例...
阅读(583) 评论(0)

基于深度学习的图像分割: Learning to Segment Object Candidates -- Facebook

内容概要: 采用的是 两步走的 Object detection的 深度学习框架,首先通过框架的第一部分的分支给出 目标 proposal; 然后 在proposal当中进行检测。 文章的的优点在于: proposal和 detection两部分共享大部分网络,网络精简 且效率高; 得到的proposal 数目更少,但是recall却非常的高;文章的准确度大幅度的提高;目前刚刚开源。...
阅读(2244) 评论(3)

Sublime Text2 CUDA 语法高亮

很简单: 1. 进入到 Sublime Text Package文件夹所在的路径      Click the Preferences > Browse Packages… menu 这样就进入到里面了(如果你没办法查看这个路径,将其中一个文件夹 拉到 终端就会显示这个文件的路径了,回退一级目录就是Package的路径了。)假设这个路径是 path,终端进入到这个路径: c...
阅读(469) 评论(0)

【GPU编程系列之二】CUDA编程基础

转自:http://www.cnblogs.com/stewart/archive/2013/01/05/2846860.html 1.什么是CUDA        CUDA(Compute Unified Device Architecture),统一计算架构,是NVidia推出的并行计算平台。NVidia官方对其的解释是:一个并行计算平台和简单(简洁)地使用图像处理单元(GPU)进...
阅读(1115) 评论(0)

【GPU编程系列之一】从深度学习选择什么样的gpu来谈谈gpu的硬件架构

转自:http://chenrudan.github.io/blog/2015/12/20/introductionofgpuhardware.html 从深度学习在2012年大放异彩,gpu计算也走入了人们的视线之中,它使得大规模计算神经网络成为可能。人们可以通过07年推出的CUDA(Compute Unified Device Architecture)用代码来控制gpu进行并行计算。本...
阅读(2306) 评论(0)

Batch Normalization 神经网络加速算法

转自: http://www.cnblogs.com/neopenx/p/5211969.html 从Bayesian角度浅析Batch Normalization 前置阅读:http://blog.csdn.net/happynear/article/details/44238541——Batch Norm阅读笔记与实现 前置阅读:http://www.zhih...
阅读(1857) 评论(0)

3D 重建相关算法

作者:徐普 链接:https://www.zhihu.com/question/29885222/answer/48940748 来源:知乎 简历发这pu.xu@dji.com ================================================== 我讲一下用一组图片来做3D reconstruction需要的算法吧(SFM), 使用这种方法的软件比...
阅读(1287) 评论(1)

深度学习二:Neural art:用机器模仿梵高

http://phunter.farbox.com/post/mxnet-tutorial2 题注:本来这是第三集的内容,但是Eric Xie 勤劳又机智的修复了mxnet和cuDNN的协作问题,我就把这篇当作一个卷积网络ConvNet(CNN)神奇而有趣的例子,寓教于乐给大家提起学习兴趣,原计划的CNN教学顺延到下一集。 Neural art:用机器模仿梵高 Neural ar...
阅读(2324) 评论(0)

深度学习一:安装MXnet包,实现MNIST手写数体识别

MXnet: 轻量化分布式可移植深度学习计算平台安装MXnet 基本依赖的安装下载mxnet安装CUDA编译支持GPU的MXnet安装Python支持 运行MNIST手写数字识别 可能出现的问题MNIST代码简单讲解:设计一个最简单的多层神经网络 后记 我想写一系列深度学习的简单实战教程,用mxnet做实现平台的实例代码简单讲解深度学习常用的一些技术方向和实战样例。这...
阅读(2107) 评论(0)

BING算法——思路整理(目标检测算法)

BING 算法最终是帮忙找到图像当中的候选的物体区域, Box表示为:Get potential bounding boxes, each of which isrepresented by a Vec4i for (minX, minY, maxX, maxY).将图像归一化到一个相同的尺度(例如:8*8)上,一般对象的封闭轮廓和梯度范数之间具有强联系。能够在识别一个对象之前察觉它,非常接近自底...
阅读(5191) 评论(28)
113条 共8页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:419677次
    • 积分:5094
    • 等级:
    • 排名:第5297名
    • 原创:101篇
    • 转载:11篇
    • 译文:0篇
    • 评论:196条
    博客专栏
    最新评论