# 也谈第1500个只有2、3、5质因子的自然数的计算

#include <cstdlib>
#include <cstdio>

class Calc235
{
unsigned *v;
unsigned minV, va, vb, vc;
int a,b,c;
const int N;
int min(unsigned a, unsigned b, unsigned c)
{
return (a<=b)?((a<=c)?a:c):((b<=c)?b:c);
}
public:
Calc235(int n)
:N(n)
{
v = new unsigned[N];
}
~Calc235()
{
delete[]v;
}
void execute()
{
v[0] = 1;
a = b = c = 0;
va = v[a] * 2;
vb = v[b] * 3;
vc = v[c] * 5;
for (int i=1; i<N; ++i)
{
v[i] = min(va, vb, vc);
if (va == v[i])
{
va = v[++a] * 2;
}
if (vb == v[i])
{
vb = v[++b] * 3;
}
if (vc == v[i])
{
vc = v[++c] * 5;
}
// printf("v[%i]=%10u v[%i]=%10u v[%i]=%10u v[%i]=%10u/n",
//  i, v[i], a, v[a]*2, b, v[b]*3, c, v[c]*5);
}
}
unsigned getResult()
{
return v[N-1];
}
};

int main(int argc, char *argv[])
{
int N = 1500;
if (argc > 1)
{
N = atoi(argv[1]);
}
Calc235 calc(N);
calc.execute();
unsigned v = calc.getResult();
printf("result = %u/n", v);
return 0;
}

计算结果：

v[1498]= 854296875 v[1363]= 859963392 v[1287]= 859963392 v[1197]= 860934420
v[1499]= 859963392 v[1364]= 860934420 v[1288]= 860934420 v[1197]= 860934420
v[1500]= 860934420 v[1365]= 864000000 v[1289]= 864000000 v[1198]= 864000000
v[1501]= 864000000 v[1366]= 874800000 v[1290]= 874800000 v[1199]= 874800000

v[1829]=3955078125 v[1674]=3981312000 v[1589]=3981312000 v[1483]=3981312000
v[1830]=3981312000 v[1675]=3985807500 v[1590]=3985807500 v[1484]=3985807500
v[1831]=3985807500 v[1676]=4000000000 v[1591]=4026531840 v[1485]=4000000000
v[1832]=4000000000 v[1677]=4026531840 v[1591]=4026531840 v[1486]=4026531840
v[1833]=4026531840 v[1678]=4031078400 v[1592]=4031078400 v[1487]=4031078400
v[1834]=4031078400 v[1679]=4050000000 v[1593]=4050000000 v[1488]=4050000000
v[1835]=4050000000 v[1680]=4076863488 v[1594]=4076863488 v[1489]=4081466880
v[1836]=4076863488 v[1681]=4081466880 v[1595]=4081466880 v[1489]=4081466880
v[1837]=4081466880 v[1682]=4096000000 v[1596]=4100625000 v[1490]=4096000000
v[1838]=4096000000 v[1683]=4100625000 v[1596]=4100625000 v[1491]=4100625000
v[1839]=4100625000 v[1684]=4132485216 v[1597]=4132485216 v[1492]=4147200000
v[1840]=4132485216 v[1685]=4147200000 v[1598]=4147200000 v[1492]=4147200000
v[1841]=4147200000 v[1686]=4194304000 v[1599]=4199040000 v[1493]=4194304000
v[1842]=4194304000 v[1687]=4199040000 v[1599]=4199040000 v[1494]=4199040000
v[1843]=4199040000 v[1688]=4218750000 v[1600]=4218750000 v[1495]=4218750000
v[1844]=4218750000 v[1689]=4246732800 v[1601]=4246732800 v[1496]=4246732800
v[1845]=4246732800 v[1690]=4251528000 v[1602]=4251528000 v[1497]=4251528000
v[1846]=4251528000 v[1691]=         0 v[1603]=4271484375 v[1498]=4271484375
v[1847]=         0 v[1692]=   4849664 v[1603]=4271484375 v[1498]=4271484375
v[1848]=   4849664 v[1693]=   9704804 v[1603]=4271484375 v[1498]=4271484375
v[1849]=   9704804 v[1694]=  25032704 v[1603]=4271484375 v[1498]=4271484375
v[1850]=  25032704 v[1695]=  58597376 v[1603]=4271484375 v[1498]=4271484375
v[1851]=  58597376 v[1696]=  79032704 v[1603]=4271484375 v[1498]=4271484375
v[1852]=  79032704 v[1697]=  99563954 v[1603]=4271484375 v[1498]=4271484375
v[1853]=  99563954 v[1698]= 128712704 v[1603]=4271484375 v[1498]=4271484375
v[1854]= 128712704 v[1699]= 133707704 v[1603]=4271484375 v[1498]=4271484375
v[1855]= 133707704 v[1700]= 184008704 v[1603]=4271484375 v[1498]=4271484375

• 本文已收录于以下专栏：

## (hdu step 2.1.3)Largest prime factor(求一个数的最大质因子的位置)

• caihongshijie6
• 2015年01月30日 20:34
• 1901

## 寻找质因子 UESTC - 982

• qq_36553623
• 2017年02月27日 23:32
• 297

## 【codevs1246】丑数，STL与取模大质数的好处

• xym_CSDN
• 2015年12月08日 20:11
• 368

## 丑数(数论)

Description 丑数就是这个数的质因子只有2,3,5,7这四个，除此之外不再含有其它 别的质因子。 注意1也被认为是丑数.丑数的前20个为 1, 2, 3, 4, 5, 6, 7, 8...
• u011292087
• 2014年01月10日 19:13
• 611

## 读入一个自然数，将n分解为质因子连乘的形式输出（筛法）

• qsort_
• 2016年07月13日 21:21
• 1121

## 求第1500个丑数

• Double2hao
• 2016年12月14日 16:22
• 1548

## 【HUSTOJ】1033: 质因子分解

1033: 质因子分解 Time Limit: 1 Sec  Memory Limit: 128 MB Submit: 189  Solved: 40 原题链接 ...
• dearvee
• 2016年05月04日 23:18
• 138

## 计算数自然数序列中的1和2

• oswin
• 2014年10月22日 22:02
• 794

## 算法学习笔记之寻找第1500个丑数

• a_step_further
• 2017年01月30日 21:03
• 179

## 把只包含因子2、3和5的数称作丑数（Ugly Number）。例如6、8都是丑数，但14不是，因为它包含因子7。 习惯上我们把1当做是第一个丑数。求按从小到大的顺序的第N个丑数。

• A784586
• 2017年02月28日 13:20
• 2771

举报原因： 您举报文章：也谈第1500个只有2、3、5质因子的自然数的计算 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)