python描述符

本文详细介绍了Python中的描述符,包括数据描述符和非数据描述符,以及它们在属性查找顺序中的优先级。通过实例解析了__get__,__set__,__del__方法的作用,展示了如何通过描述符实现属性的类型检查和访问控制。同时探讨了实例属性、类属性和__getattr__方法在属性访问中的行为。" 6073864,864233,MATLAB COM组件异常:mclmcrrt73.dll缺失问题解决,"['MATLAB', '编译器', '部署', '应用程序', '库']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

面试问到的。从没听说过这个东西。今天总结一下。

---------------------------------

在Python中,访问一个属性的优先级顺序按照如下顺序:
1.类属性
2.数据描述符
3.实例属性
4.非数据描述符
5.__getattr__()方法。这个方法的完整定义如下所示:

def __getattr__(self,attr) :#attr是self的一个属性名
     pass;

先来阐述下什么叫数据描述符。

数据描述符是指实现了__get__,__set__,__del__方法的类属性(由于Python中,一切皆是对象,所以你不妨把所有的属性也看成是对象)

PS:个人觉得这里最好把数据描述符等效于定义了__get__,__set__,__del__三个方法的接口。

阐述下这三个方法:

__get__的标准定义是__get__(self,obj,type=None),它非常接近于JavaBean的get

第一个函数是调用它的实例,obj是指去访问属性所在的方法,最后一个type是一个可选参数,通常为None(这个有待于进一步的研究)

例如给定类X和实例x,调用x.foo,等效于调用:

type (x).__dict__[ "foo" ].__get__(x, type (x))

调用X.foo,等效于调用:

type (x).__dict__[ "foo" ].__get__( None , type (x))

第二个函数__set__的标准定义是__set__(self,obj,val),它非常接近于JavaBean的set方法,其中最后一个参数是要赋予的值

第三个函数__del__的标准定义是__del__(self,obj),它非常接近Java中Object的Finailize()方法,指Python在回收这个垃圾对象时所调用到的析构函数,只是这个函数永远不会抛出异常。因为这个对象已经没有引用指向它,抛出异常没有任何意义。

接下来,我们来一一比较这些优先级.

首先来看类属性

# -*- coding:utf-8 -*-
'''
Created on 2013-3-29

@author: naughty
'''
class A(object):
    foo=3

print A.foo
a=A()
print a.foo
a.foo=4
print a.foo
print A.foo

上面这段代码的输出如下:

3
3
4
3

从输出可以看到,当我们给a.foo赋值的时候,其实与类实例的那个foo是没有关系的。a.foo=4 这句话给a对象增加了一个属性叫foo。其值是4。

最后两个语句明确的表明了,我们输出a.foo和A.foo的值,他们是不同的。

但是为什么a=A()语句后面的print a.foo输出了3呢?这是因为根据搜索顺序找到了类属性。当我们执行a.foo=4的时候,我们让a对象的foo属性指向了4这个对象。但是并没有改变类属性foo的值。所以最后我们print A.foo的时候,又输出了3。

# -*- coding:utf-8 -*-
'''
Created on 2013-3-29

@author: naughty
'''
class A(object):
    foo=3

a=A()
a.foo=4
print a.foo
del a.foo
print a.foo

上面的代码,我给a.foo赋值为4,在输出一次之后就del了。两次输出,第一次输出的是a对象的属性。第二次是类属性。不是说类属性的优先级比实例属性的高吗。为啥第一次输出的是4而不是3呢?还是上面解释的原因。因为a.foo与类属性的foo只是重名而已。我们print a.foo的时候,a的foo指向的是4,所以输出了4。

------------------------------------

然后我们来看下数据描述符这一全新的语言概念。按照之前的定义,一个实现了__get__,__set__,__del__的类都统称为数据描述符。我们来看下一个简单的例子。

# -*- coding:utf-8 -*-
'''
Created on 2013-3-29

@author: naughty
'''

class simpleDescriptor(object):

   def __get__(self,obj,type=None):
       pass

   def __set__(self,obj,val):
       pass

   def __del__(self,obj):
       pass

class A(object):
    foo=simpleDescriptor()
    
print str(A.__dict__)
print A.foo
a=A()
print a.foo
a.foo=13
print a.foo

上面例子的输出结果如下:

{'__dict__': <attribute '__dict__' of 'A' objects>, '__module__': '__main__', 'foo': <__main__.simpleDescriptor object at 0x005511B0>, '__weakref__': <attribute '__weakref__' of 'A' objects>, '__doc__': None}
None
None
None

从输出结果看出,print语句打印出来的都是None。这说明a.foo都没有被赋值内容。这是因为__get__函数的函数体什么工作都没有做。直接是pass。此时,想要访问foo,每次都没有返回内容,所以输出的内容就是None了。

# -*- coding:utf-8 -*-
'''
Created on 2013-3-29

@author: naughty
'''

class simpleDescriptor(object):

   def __get__(self,obj,type=None):
       return "hi there"

   def __set__(self,obj,val):
       pass

   def __del__(self,obj):
       pass
   
class A(object):
    foo=simpleDescriptor()
    
print str(A.__dict__)
print A.foo
a=A()
print a.foo
a.foo=13
print a.foo

把__get__函数实现以下,就可以得到如下输出结果:

{'__dict__': <attribute '__dict__' of 'A' objects>, '__module__': '__main__', 'foo': <__main__.simpleDescriptor object at 0x00671190>, '__weakref__': <attribute '__weakref__' of 'A' objects>, '__doc__': None}
hi there
hi there
hi there

为了加深对数据描述符的理解,看如下例子:

# -*- coding:utf-8 -*-
'''
Created on 2013-3-29

@author: naughty
'''

class simpleDescriptor(object):
    def __init__(self):
        self.result = None;
    def __get__(self, obj, type=None) :
        return self.result - 10;
    def __set__(self, obj, val):
        self.result = val + 3;
        print self.result;
    def __del__(self, obj):
        pass
class A(object):
    foo = simpleDescriptor();
a = A();
a.foo = 13;
print a.foo;

上面代码的输出是

16

6

第一个16为我们在对a.foo赋值的时候,人为的将13加上3后作为foo的值,第二个6是我们在返回a.foo之前人为的将它减去了10。

所以我们可以猜测,常规的Python类在定义get,set方法的时候,如果无特殊需求,直接给对应的属性赋值或直接返回该属性值。如果自己定义类,并且继承object类的话,这几个方法都不用定义。

-----------------

在这里看一个题外话。

看代码

# -*- coding:utf-8 -*-
'''
Created on 2013-3-29

@author: naughty
'''

class simpleDescriptor(object):
    def __init__(self):
        self.result = None;
    def __get__(self, obj, type=None) :
        return self.result - 10;
    def __set__(self, obj, val):
        if isinstance(val,str):
            assert False,"int needed! but get str"
        self.result = val + 3;
        print self.result;
    def __del__(self, obj):
        pass
class A(object):
    foo = simpleDescriptor();
a = A();
a.foo = "13";
print a.foo;

上面代码在__set__ 函数中检查了参数val,如果val是str类型的,那么要报错。这就实现了我们上一篇文章中要实现的,在给属性赋值的时候做类型检查的功能。

-----------------------------------------------

下面我们来看下实例属性和非数据描述符。

# -*- coding:utf-8 -*-
'''
Created on 2013-3-29

@author: naughty
'''

class B(object):
    foo = 1.3
b = B()
print b.__dict__
b.bar = 13
print b.__dict__
print b.bar

上面代码输出结果如下:

 {}
{'bar': 13}
13

那么什么是非数据描述符呢?

简单的说,就是没有实现get,set,del三个方法的所有类。

让我们任意看一个函数的描述:

def call():

    pass

执行print dir(call)会得到如下结果:

['__call__', '__class__', '__closure__', '__code__', '__defaults__', '__delattr__', '__dict__', '__doc__', '__format__', '__get__', '__getattribute__', '__globals__', '__hash__', '__init__', '__module__', '__name__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'func_closure', 'func_code', 'func_defaults', 'func_dict', 'func_doc', 'func_globals', 'func_name']

先看下dir的帮助。

dir列出给定对象的属性或者是从这个对象能够达到的对象。

回到print dir(call)方法的输出,看到,call方法,有输出的那么多个属性。其中就包含了__get__函数。但是却没有__set__和__del__函数。所以所有的类成员函数都是非数据描述符。

看一个实例数据掩盖非数据描述符的例子:

'''
Created on 2013-3-29

@author: naughty
'''

class simpleDescriptor(object):    
    def __get__(self,obj,type=None) :
        return "get",self,obj,type

class D(object):
    foo=simpleDescriptor()
d=D()
print d.foo
d.foo=15
print d.foo

看输出:

('get', <__main__.simpleDescriptor object at 0x02141190>, <__main__.D object at 0x025CAF50>, <class '__main__.D'>)
15

可见,实例数据掩盖了非数据描述符。

如果改成数据描述符,那么就不会被覆盖了。看下面:

'''
Created on 2013-3-29

@author: naughty
'''

class simpleDescriptor(object):    
    def __get__(self,obj,type=None) :
        return "get",self,obj,type
    def __set__(self,obj,type=None) :
        pass
    def __del__(self,obj,type=None) :
        pass

class D(object):
    foo=simpleDescriptor()
d=D()
print d.foo
d.foo=15
print d.foo

代码的输出如下:

('get', <__main__.simpleDescriptor object at 0x01DD1190>, <__main__.D object at 0x0257AF50>, <class '__main__.D'>)
('get', <__main__.simpleDescriptor object at 0x01DD1190>, <__main__.D object at 0x0257AF50>, <class '__main__.D'>)


由于是数据描述符,__set __函数体是pass,所以两次输出都是同样的内容。

最后看下__getatrr__方法。它的标准定义是:__getattr__(self,attr),其中attr是属性名

让我们来看一个简单的例子:

'''
Created on 2013-3-29

@author: naughty
'''

class D(object):
    def __getattr__(self,attr):
        return attr

d=D()
print d.foo,type(d.foo)
d.foo=15
print d.foo

代码输出:

foo <type 'str'>
15

由于d对象中根本没有foo这个属性,所以python最后求助于__getattr__函数。然后打印出__getattr__函数的返回值。

注意:这里不要认为的造成无限递归

代码如下:

'''
Created on 2013-3-29

@author: naughty
'''

class D(object):
    def __getattr__(self,attr):
        return self.attr

d=D()
print d.foo
d.foo=15
print d.foo

这段代码, 会造成如下错误:

Exception RuntimeError: 'maximum recursion depth exceeded while calling a Python object'in <type 'exceptions.AttributeError'> ignored
Traceback (most recent call last):
  File "H:\final\code\PyTestService\comz\test\Copy of Copy of Test.py", line 12, in <module>
    print d.foo
  File "H:\final\code\PyTestService\comz\test\Copy of Copy of Test.py", line 9, in __getattr__
    return self.attr
  File "H:\final\code\PyTestService\comz\test\Copy of Copy of Test.py", line 9, in __getattr__
    return self.attr

....

  File "H:\final\code\PyTestService\comz\test\Copy of Copy of Test.py", line 9, in __getattr__
    return self.attr
  File "H:\final\code\PyTestService\comz\test\Copy of Copy of Test.py", line 9, in __getattr__
    return self.attr
AttributeError: 'D' object has no attribute 'attr'

造成了超过最大递归深度问题。

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值