Manacher's ALGORITHM

文章转载于Felix's Blog,在此谢过,便于理解,文章有稍微改动

Manacher's ALGORITHM: O(n)时间求字符串的最长回文子串

首先用一个非常巧妙的方式对子串预处理:

(1)将所有可能的奇数/偶数长度的回文子串都转换成了奇数长度:在每个字符的两边都插入一个特殊的符号。比如 abba 变成 #a#b#b#a#, aba变成 #a#b#a#。 

(2)为了进一步减少编码的复杂度,可以在字符串的开始加入另一个特殊字符,这样就不用特殊处理越界问题,比如$#a#b#a#。

举例:

下面以字符串12212321为例,经过上一步,变成了 S[] = "$#1#2#2#1#2#3#2#1#";

然后用一个数组 P[i] 来记录以字符S[i]为中心的最长回文子串向左/右扩张的长度(包括S[i]),比如S和P的对应关系:

S  #  1  #  2  #  2  #  1  #  2  #  3  #  2  #  1  #
P  1  2  1  2  5  2  1  4  1  2  1  6  1  2  1  2  1
(p.s. 可以看出, P[i]-1正好是原字符串中回文串的总长度

那么怎么计算P[i]呢?该算法增加两个辅助变量(其实一个就够了,两个更清晰)id和mx,

其中id表示最大回文子串中心的位置mx则为id+P[id],也就是最大回文子串的边界

------------

注意:在算法中,id和mx是一直更新的,其表示,以id为起点,半径为mx势力范围内能够罩住的区间,即[id - mx,id + mx]。

在处理第i个字符时,如果mx > i,则说明该字符在以id为起点的势力区间范围内,第i个字符能用的上一次处理的结果,可以不用去匹配而直接获得已经匹配的字符个数。需要注意的是,此时直接获得的已经匹配的字符个数不一定是最终匹配的个数。原因会在下面讨论。

如果不在势力范围内,只能按照普通的方法挨个匹配喽。

这里需要说明下,对于字符S[t],它的回文子串时以t开始,半径为mx。

则表示,S[t - mx] != S[t + mx],即以S[t]为中心的回文子串是不包含字符S[t + mx]的。

因为字符t的回文子串时以t开始,如果包含mx,则其回文子串区间为[t,t+mx],其长度应该为(t + mx) - mx + 1 = t + 1。(包含两个端点的区间长度等于两个端点差 + 1)。这与其半径为mx,是相反的。故不包含字符S[t + mx]。

下面给出一个结论。

------------

然后可以得到一个非常神奇的结论,这个算法的关键点就在这里了:

如果mx > i,那么P[i] >= MIN(P[2 * id - i], mx - i),其中i与j关于id对称。

就是这个串卡了我非常久。实际上如果把它写得复杂一点,理解起来会简单很多:

//记j = 2 * id - i,也就是说 j 是 i 关于 id 的对称点。
if (mx - i > P[j]) 
    P[i] = P[j];
else /* P[j] >= mx - i */
    P[i] = mx - i; // P[i] >= mx - i,取最小值,之后再匹配更新。

当然光看代码还是不够清晰,还是借助图来理解比较容易。

第一种情况:

当 mx - i > P[j] 的时候,以S[j]为中心的回文子串包含在以S[id]为中心的回文子串中,由于 i 和 j 对称,以S[i]为中心的回文子串必然包含在以S[id]为中心的回文子串中,所以必有 P[i] = P[j],见下图。

------------------------------

说明:

在图中,给出两个条件:

(1)mx > i :说明求解字符s[i]的回文子串时,可以使用之前求出的结果。

(2)p[j] < mx - i :说明以j为中心的回文子串全部在以id中心的势力范围内

此时,p[i] = p[j] :i与j对称,则以i为中心的回文子串全部在以id中心的势力范围内

此时,不会更新id和mx值,即可以直接处理下一个字符。

-------------------------------

第二种情况:

当 P[j] >= mx - i 的时候,以S[j]为中心的回文子串不一定完全包含于以S[id]为中心的回文子串中,但是基于对称性可知,下图中两个绿框所包围的部分是相同的,也就是说以S[i]为中心的回文子串,其向右至少会扩张到mx的位置,也就是说 P[i] >= mx - i。至于mx之后的部分是否对称,就只能老老实实去匹配了。

------------------------------

说明:

在图中,具体包含两种情况:

(1)mx > i : 说明求解字符s[i]的回文子串时,可以使用之前求出的结果。

<1> p[j] > mx - i :说明以j为中心的回文子串只有部分在以id中心的势力范围内

此时,p[i] = mx - i 且 不会更新id和mx值,即可以直接处理下一个字符。

<2> p[j] = mx - i :说明以j为中心的回文子串全部在以id中心的势力范围内

此时,p[i] >= mx - i,即字符s[i]的回文子串向右至少会扩张到mx的位置,即之后还需要继续匹配。

至于这两种情况,可以在图上画画就可以推出。

-------------------------------

第三种情况:

对于 mx <= i 的情况,无法对 P[i]做更多的假设,只能P[i] = 1,然后再去匹配了。

此时,正在处理的字符不在以id为起点的势力区间范围内,则无法用到上一次处理的结果,此时只能乖乖自己去匹配了。

于是代码如下:

//输入,并处理得到字符串s
int p[1000], mx = 0, id = 0;
memset(p, 0, sizeof(p));
for (i = 1; s[i] != '\0'; i++) 
{
	if (mx > i) //字符i在id的势力范围内,可以利用之前的结果。
	{
		p[i] = min(p[2*id-i], mx-i);
	}
	else //字符i不在id的势力范围内,只能挨着匹配。
	{
		p[i] = 1;
	}
	//挨着匹配
	while (s[i + p[i]] == s[i - p[i]])
	{
		p[i]++;
	}
	//更新id和其区间
	if (i + p[i] > mx) 
	{
		mx = i + p[i];
		id = i;
	}
}
//最后需要在非#中,找出p[i]中最大的,之后最大p[i] - 1就是所求。

根据上面的分析,可以细化程序:

(1) 当 mx > i 且 mx - i > p[j]时,

此时,p[i] = p[j] 且 不会更新mx和id,可以直接处理下一个字符。

(2) 当 mx > i 且 mx - i < p[j]时,

此时,p[i] = mx - i 且 不会更新mx和id,可以直接处理下一个字符。

当然,这两种情况肯定也不会满足while的条件s[i + p[i]] == s[i - p[i]]和if的条件i + p[i] > mx,只不过他相比之下会多两次判断。

回头看,一旦这样展开,也会多一次if判断,在下面的程序中,可以不展开了。这里只是为了更好地说明该程序。

细化后的代码如下:

//输入,并处理得到字符串s
int p[1000], mx = 0, id = 0;
memset(p, 0, sizeof(p));
for (i = 1; s[i] != '\0'; i++) 
{
	if (mx > i)//能借鉴之前的结果
	{
		if (p[2*id-i] < mx - i)
		{
			p[i] = p[j];
			continue;
		}
		else if (p[2*id-i] > mx - i)
		{
			p[i] = mx - i;
			continue;;
		}
		else
		{
			p[i] = mx - i;				
		}
	}
	else
	{
		p[i] = 1; //回文子串长度等于本身
	}
	//挨个匹配
	while(pNewStr[i + p[i]] == pNewStr[i - p[i]])
	{
		p[i]++;
	}
	//扩展已经匹配的最远距离
	if (i + p[i] > mx)
	{
		mx = i + p[i];
		nId = i;
	}
}
//找出p[i]中最大的
代码:

#include <iostream>
#include <assert.h>
using namespace std;

char* InitStr(char* pStr)
{
	assert(pStr != NULL);
	//填充字符
	int nCount = 0;
	int nLenOldStr = strlen(pStr);
	int nLenNewStr = (nLenOldStr << 1) + 3;//ab -> $#a#b#0
	char* pNewStr = new char[nLenNewStr];
	pNewStr[nCount++] = '$';
	for (int i = 0;i < nLenOldStr;i++)
	{
		pNewStr[nCount++] = '#';
		pNewStr[nCount++] = pStr[i];
	}
	pNewStr[nCount++] = '#';
	pNewStr[nCount] = '\0';

	return pNewStr;
}

int Manacher(char* pStr)
{
	assert(pStr != NULL);
	int nId = 1;
	int nMx = 0;
	int j = 0;
	int nLongest = 0;
	char* pNewStr = InitStr(pStr);
	int nLenStr = strlen(pNewStr);
	int* p = new int[nLenStr];
	memset(p,0,sizeof(int) * nLenStr);
	for (int i = 1;pNewStr[i] != '\0';i++)
	{
		if (nMx > i)//能借鉴之前的结果
		{
			p[i] = min(p[(nId << 1) - i],nMx - i);//id = (i + j) >> 1;
		}
		else
		{
			p[i] = 1; //回文子串长度等于本身
		}
		//挨个匹配
		while(pNewStr[i + p[i]] == pNewStr[i - p[i]])
		{
			p[i]++;
		}
		//扩展已经匹配的最远距离
		if (i + p[i] > nMx)
		{
			nMx = i + p[i];
			nId = i;
		}
		//找出最大值匹配字符个数
		if (pNewStr[i] != '#')
		{
			nLongest = max(nLongest,p[i]);
		}
	}
	delete[] pNewStr;
	delete[] p;
	return nLongest - 1;
}

int main()
{
	//char strArr[] = "122122212";
	char strArr[] = "12212221";
	cout<<Manacher(strArr)<<endl;
	system("pause");
	return 1;
}

  • 2
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值