关闭

搜集的一些neural style style github source and website

2936人阅读 评论(6) 收藏 举报

搜集的一些neural style style github source and website


https://github.com/jcjohnson/neural-style

https://github.com/yusuketomoto/chainer-fast-neuralstyle
https://github.com/manuelruder/artistic-videos
https://github.com/DmitryUlyanov/texture_nets
https://github.com/mbartoli/neural-animation
https://github.com/zerolocker/neural-style
https://github.com/AbdullahAlfaraj/neural-style-website
https://github.com/DylanAlloy/NeuralStyle-WebApp
https://github.com/OlavHN/fast-neural-style
https://github.com/chuanli11/CNNMRF
https://github.com/Teaonly/easyStyle
https://github.com/searchXiaoLai/paintmaster
https://github.com/naman14/neural-style-android
https://github.com/DmitryUlyanov/fast-neural-doodle
https://github.com/layumi/2016_Artist_Style
https://github.com/alireza-a/neural-style-webapp
https://github.com/layumi/2015_Face_Detection


https://github.com/hashbangCoder/Real-Time-Style-Transfer


VGG_ILSVRC_19_layers_deploy.prototxt
https://github.com/genekogan/CubistMirror
https://github.com/gafr/chainer-fast-neuralstyle-models
https://github.com/awentzonline/keras-rtst
https://github.com/suquark/neural-style-visualizer
https://github.com/anishathalye/neural-style
https://github.com/larspars/neural-style-video
https://github.com/titu1994/Neural-Style-Transfer
https://github.com/andersbll/neural_artistic_style


Neural-Style movie
https://github.com/zhaw/neural_style
https://github.com/Explee/neural_style


Performance result


We can see a x703 time slower in a tensorflow CPU non-quantized implementation versus the AWS GPU


InfrastructureTime
tensorflow GPU K420 AWS:~0.0329s (batching) 0.026s (looping)
tensorflow mac os:4.13s (batching) 3.31s (looping)
tensorflow mac os simulateur:5.86s (float32) 16.9 (quantized, this is weird)
tensorflow iphone 6s CPU:18.30s (float32)


Image size: 600x600
batching: all image are processed in parallel
looping: one image at a time
quantized: Using tensorflow quantization system, (Shouldn't be slower, probably needs a cleaner tf graph)


https://github.com/SaMnCo/docker-neuraltalk2
Place instances_train-val2014.zip in the same folder. You can download it from http://mscoco.org/dataset/#download
Then run the following commands:
Deep learning algorithm paints smooth-moving works of art


http://newatlas.com/neural-network-videos/44580/  PDF截图
推特上一个艺术家收集整理的艺术化视频资料集合
http://www.genekogan.com/works/style-transfer.html  资料合集
https://gist.github.com/genekogan/d61c8010d470e1dbe15d 制作流程
http://www.kylemcdonald.net/stylestudies/  选择合适的Style,不要无畏的浪费GPU Time
 
https://m.youtube.com/watch?utm_campaign=buffer&utm_source=twitter.com&v=BuuNjnjpqFI&utm_medium=social&utm_content=buffer5220e
http://mt.sohu.com/20160816/n464537105.shtml
http://blog.josephmisiti.com/making-neural-art
https://github.com/mtyka/neural_artistic_style
 
用7台手机测试。3个iPhone,4个Android。最快的android,9秒左右,最慢的ios,约15秒左右。


https://github.com/rupeshs/neuralstyler
https://github.com/ryankiros/neural-storyteller
https://github.com/gafr/chainer-fast-neuralstyle-models/issues/5
https://github.com/SergeyMorugin/ostagram
https://developer.apple.com/reference/accelerate/1912851-bnns
https://github.com/collinhundley/Swift-AI/issues/50
http://arxiv.org/abs/1603.08155
https://github.com/jcjohnson/neural-style/issues/313


https://github.com/yusuketomoto/chainer-fast-neuralstyle/issues/1#issuecomment-228944706
markz-nyc commented 23 hours ago
Prisma already made the neural style into offline mode, how iPhone can get such good result in few seconds without using gpu?
@DylanAlloyDylanAlloy commented 23 hours ago • edited
Because it's based on C code probably rather than Python.


https://github.com/awentzonline/keras-rtst.git
https://www.researchgate.net/publication/301836893_Perceptual_Losses_for_Real-Time_Style_Transfer_and_Super-Resolution
https://vimeo.com/167910860
http://www.creativeai.net/posts/EyoFYu2ZDv6T3zdYi/real-time-style-transfer-with-keras
https://www.reddit.com/r/MachineLearning/comments/4cj1jj/160308155_perceptual_losses_for_realtime_style/
http://www.le.com/ptv/vplay/22792152.html
https://plus.google.com/+ResearchatGoogle/posts/KxetFFXpPTJ
http://www.academia.edu/254458/Algorithm_for_Real-Time_Style_Transfer_for_Human_Motion
http://www.slideshare.net/yusuketomoto/realtime-style-transfer-63669036
 
http://blog.csdn.net/lebula/article/details/51896836
论文笔记:Perceptual Losses for Real-Time Style Transfer and Super-Resolution[doing]
1.transformation: image to image 
2.perceptual losses:
     psnr是per-pixel的loss,值高未必代表图片质量好,广泛应用只是因为计算比较简单
对图片做super resolution
define 4 loss:
1.pixel L2  :feature reconstruction loss
2.gram matrix:style reconstruction loss
3.per-pixel
4.TV


http://www.genekogan.com/works/style-transfer.html
http://humanmotion.ict.ac.cn/papers/2015P1_StyleTransfer/details.htm
http://dl.acm.org/citation.cfm?id=2766999
https://www.versioneye.com/python/keras-rtst/0.0.1
pip install https://pypi.python.org/packages/source/k/keras-rtst/keras-rtst-0.0.1.tar.gz


https://blogs.nvidia.com/blog/2016/05/25/deep-learning-paints-videos/
http://www.meyumer.com/pdfs/SpectralStyleTransfer.pdf
http://blogs.scientificamerican.com/sa-visual/neural-networks-for-artists/
http://dmlc.ml/mxnet/2016/06/20/end-to-end-neural-style.html
https://github.com/dmlc/mxnet/tree/master/example/neural-style
http://www.nerdcore.de/2016/07/10/prisma-style-transfer-kommt-fuer-android-und-die-technik-hinter-der-app/
http://link.springer.com/article/10.1007/s11554-016-0612-0
http://sssslide.com/www.slideshare.net/yusuketomoto/realtime-style-transfer-63669036
http://www.trancefish.de/blog/show/design/Prima+ist+auch+zum+Filmemachen+geeignet/
http://petapixel.com/2016/07/20/prisma-app-turns-standard-timelapse-incredible-moving-painting/
http://petapixel.com/2016/08/03/artisto-app-prisma-video-turns-videos-van-goghs/
https://blog.my.com/artisto-app-for-video-processing-when-your-videos-turn-into-paintings-that-come-to-life/
https://www.engadget.com/2016/08/03/artisto-prisma-for-videos/
 
style transfer in real-time
 
https://github.com/6o6o/chainer-fast-neuralstyle.git


#!/bin/bash
for name in ./*.jpg; do convert -resize 256x256\! $name $name; done


ffmpeg -i input.flv  out%d.png
ffmpeg -i input.flv -vf fps=1 out%d.png
#ffmpeg -framerate 30 -i img%03d.png -c:v libx264 -r 30 -pix_fmt yuv420p out.mp4
ffmpeg -framerate 30 -i input%03d.jpg -codec copy  -pix_fmt yuv420p output.mkv
0
0
查看评论
发表评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场

neural-style

git clone https://github.com/jcjohnson/neural-style.git  python neural_style.py --content ./examples/1-content.jpg --styles ./examples/2-style1....
  • wjl_hdu
  • wjl_hdu
  • 2017-04-21 14:13
  • 554

十分钟搭建 Neural Style 服务

Neural style 是让机器模仿已有画作的绘画风格来把一张图片重新绘制的算法。原始论文参考【1】。 下面将介绍如何搭建基于 MxNet 的 neural style 服务,在阿里云 HPC (https://www.aliyun.com/product/hpc)上部署时间...
  • kkk584520
  • kkk584520
  • 2016-04-03 17:59
  • 6546

谈谈图像的Style Transfer(一)

总说最近更新:17-5-9 增加Neural style使用Gram矩阵的前提工作其实这个方向火起来是从2015年Gatys发表的一篇文章 A Neural Algorithm of Artistic Style, 当然了,当时新闻报道还是很标题党的,看的我热血沸腾。。言归正传,虽然只过了短短...
  • Hungryof
  • Hungryof
  • 2017-01-02 21:22
  • 7647

谈谈图像的style transfer(二)

总说主要从几个方面来进行说明吧 - 加快transfer的速度 - 让transfer的效果看起来更加visual-pleasing - 其他的一些方面 - 用GAN来做加快style stransfer 谈谈图像的Style Transfer(一) 这里写了 Neural style以及...
  • Hungryof
  • Hungryof
  • 2017-05-10 10:22
  • 6652

超越fast style transfer----任意风格图和内容图0.1秒出结果

给定任意风格图与内容图,0.1秒实现风格转换。
  • Hungryof
  • Hungryof
  • 2017-03-11 15:27
  • 5300

windows下基于tensorflow框架的neural art论文实现

windows下基于tensorflow的neural art代码实现
  • w798396217
  • w798396217
  • 2017-01-19 11:55
  • 465

神经性风格化过程的特征控制

Controlling Perceptual Factors in Neural Style Transfer相当于在第一篇上的扩展,是一种对风格化方法的优化。介绍对神经元风格化方法的概括:分别从两张踢偏上提取风格和内容物来生成一个新的图片。“style”与“content”两个·1词都是...
  • github_39502869
  • github_39502869
  • 2017-07-14 18:59
  • 161

【机器学习】Tensorflow:理解和实现快速风格化图像fast neural style

Neural Style开辟了计算机与艺术的道路,可以将照片风格化为名家大师的画风。然而这种方法即使使用GPU也要花上几十分钟。Fast Neural Style则启用另外一种思路来快速构建风格化图像,在笔记本CPU上十几秒就可以风格化一张图片。我们来看看这是什么原理。
  • lpsl1882
  • lpsl1882
  • 2017-02-23 11:20
  • 7975

tensorflow学习笔记(七):TensorFLow实战之style_transfer(风格转换)

从这部分开始利用TensorFlow进行实际应用,将会慢慢的把最新的东西一边学习一边整理一边实现,计划是初期的代码都利用tensorflow的基本API完成,后期建立大的网络结构的时候引入Keras等高等级API。   这一节主要是利用tensorflow实现style transfer,这个学习...
  • woaidapaopao
  • woaidapaopao
  • 2017-06-18 20:04
  • 1068

跑 NeuralStyle (使用CNN进行的画风迁移实验)

跑NeuralStyle教程(使用CNN的画风迁移实验)
  • Relocy
  • Relocy
  • 2016-03-27 12:02
  • 8074
    个人资料
    • 访问:243023次
    • 积分:2493
    • 等级:
    • 排名:第17124名
    • 原创:16篇
    • 转载:123篇
    • 译文:0篇
    • 评论:66条
    最新评论