基于visual Studio2013解决算法导论之043单源最短路径dijstra矩阵




题目

单源最短路径dijstra矩阵


解决代码及点评

// 26单源最短路径dijstra矩阵.cpp : 定义控制台应用程序的入口点。
//
#include <iostream>
#include<stack>
#define M 100
#define N 100
using namespace std;

typedef struct node
{
	int matrix[N][M];      //邻接矩阵 
	int n;                
	int e;                 
}Graph; 

void Dijkstra(Graph g,int *dist,int *path,int v0)   //v0源顶点 
{
	int i,j,k;
	bool visited[100];

	for(i=0;i<g.n;i++)     //初始化 
	{
		if(g.matrix[v0][i]>0&&i!=v0)
		{
			dist[i]=g.matrix[v0][i];
			path[i]=v0;     //path记录最短路径上从v0到i的前一个顶点 
		}
		else
		{
			dist[i]=INT_MAX;    //若i不与v0直接相邻,则权值置为无穷大 
			path[i]=-1;
		}
		visited[i]=false;
		path[v0]=v0;
		dist[v0]=0;
	}
	visited[v0]=true;
	for(i=1;i<g.n;i++)     //循环扩展n-1次 
	{
		int min=INT_MAX;
		int u;
		for(j=0;j<g.n;j++)    //寻找未被扩展的权值最小的顶点 
		{
			if(visited[j]==false&&dist[j]<min)
			{
				min=dist[j];
				u=j;        
			}
		} 
		visited[u]=true;
		for(k=0;k<g.n;k++)   //更新dist数组的值和路径的值 
		{
			if(visited[k]==false&&g.matrix[u][k]>0&&min+g.matrix[u][k]<dist[k])
			{
				dist[k]=min+g.matrix[u][k];
				path[k]=u; 
			}
		}        
	}    
}

void showPath(int *path,int v,int v0)   //打印最短路径上的各个顶点 
{
	stack<int> s;
	int u=v;
	while(v!=v0)
	{
		s.push(v);
		v=path[v];
	}
	s.push(v);
	while(!s.empty())
	{
		cout<<s.top()<<" ";
		s.pop();
	}
} 

int main(int argc, char *argv[])
{
	int n,e;     //表示输入的顶点数和边数 
	cout<<"输入顶点数";
	cin>>n;
	cout<<endl<<"输入边数";
	cin>>e;
	while(e!=0)
	{
		int i,j;
		int s,t,w;      //表示存在一条边s->t,权值为w
		Graph g;
		int v0;
		int *dist=(int *)malloc(sizeof(int)*n);
		int *path=(int *)malloc(sizeof(int)*n);
		for(i=0;i<N;i++)
			for(j=0;j<M;j++)
				g.matrix[i][j]=0;
		g.n=n;
		g.e=e;
		for(i=0;i<e;i++)
		{
			cout<<endl<<"输入起点(节点序号)";
			cin>>s;
			cout<<endl<<"输入终点(节点序号)";
			cin>>t;
			cout<<endl<<"输入权值";
			cin>>w;
			g.matrix[s][t]=w;
		}
		v0 = 0;        //输入源顶点 
		Dijkstra(g,dist,path,v0);
		for(i=0;i<n;i++)
		{
			if(i!=v0)
			{
				showPath(path,i,v0);
				cout<<dist[i]<<endl;
			}
		}
	}

	system("pause");
	return 0;
}


代码下载及其运行

代码下载地址:http://download.csdn.net/detail/yincheng01/6858815

解压密码:c.itcast.cn


下载代码并解压后,用VC2013打开interview.sln,并设置对应的启动项目后,点击运行即可,具体步骤如下:

1)设置启动项目:右键点击解决方案,在弹出菜单中选择“设置启动项目”


2)在下拉框中选择相应项目,项目名和博客编号一致

3)点击“本地Windows调试器”运行


程序运行结果








安卓期末大作业—Android图书管理应用源代码(高分项目),个人经导师指导并认可通过的高分设计项目,评审分98分,项目中的源码都是经过本地编译过可运行的,都经过严格调试,确保可以运行!主要针对计算机相关专业的正在做大作业、毕业设计的学生和需要项目实战练习的学习者,资源项目的难度比较适中,内容都是经过助教老师审定过的能够满足学习、使用需求,如果有需要的话可以放心下载使用。 安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—Android图书管理应用源代码(高分项目)安卓期末大作业—And
本文以电动汽车销售策略为研究对象,综合运用层次分析法、决策树、皮尔逊相关性分析、BP神经网络及粒子群优化等多种方法,深入探讨了影响目标客户购买电动汽车的因素及相应的销售策略。研究结果显示,客户对合资品牌电动汽车的满意度为78.0887,对自主品牌的满意度为77.7654,对新势力品牌的满意度为77.0078。此外,研究还发现电池性能、经济性、城市居住年限、居住区域、工作单位、职务、家庭年收入、个人年收入、家庭可支配收入、房贷占比、车贷占比等因素对电动汽车销量存在显著影响。通过BP神经网络对目标客户的购买意愿进行预测,其预测数据拟合程度超过80%,且与真实情况高度接近。基于研究结果,本文为销售部门提出了提高销量的建议,包括精准定位尚未购买电动汽车的目标客户群体,制定并实施更具针对性的销售策略,在服务难度提升不超过5%的前提下,选择实施最具可行性和针对性的销售方案。 在研究过程中,层次分析法被用于对目标客户购买电动汽车的影响因素进行系统分析与评价;决策树模型则用于对缺失数据进行预测填充,以确保数据的完整性和准确性;BP神经网络用于预测目标客户的购买意愿,并对其预测效果进行评估;粒子群优化算法对BP神经网络模型进行优化,有效提升了模型的稳定性和预测能力;皮尔逊相关性分析用于探究不同因素与购买意愿之间的相关性。通过这些方法的综合运用,本文不仅揭示了影响电动汽车销量的关键因素,还为销售策略的优化提供了科学依据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

尹成

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值