二叉搜索树是一种有序二叉树,通过对其中序遍历,可以得到一组非递减的数据。如下图所示的一颗二叉搜索树,中序遍历后得到的数组是 8、10、11、12、15、18。二叉搜索树的基本性质:左子树<=根<=右子树,查询的时间复杂度为O(lg(n))。
在实际编写代码时,定义一个结点的数据结构和一个二叉搜索树的数据结构,以及一些基本方法。
typedef struct Node
{
int value;
int size;
struct Node *parent;
struct Node *left;
struct Node *right;
} Node;
typedef struct Tree
{
Node *root;
} Tree;
Node *createNode(int value)
{
Node *node = (Node *)malloc(sizeof(Node));
node->left = NULL;
node->right = NULL;
node->parent = NULL;
node->value = value;
node->size = 1;
return node;
}
Tree* initTree()
{
Tree *tree = (Tree *)malloc(sizeof(Tree));
tree->root = NULL;
return tree;
}createNode是创建一个新结点的方法。initTree是初始化一颗二叉搜索树的方法。Node是一个结点的结构,其中value为结点的值,size为该结点下的子树的结点总数(包括自己)。Tree是一颗二叉搜索树的结构,其拥有一个树根root成员。
1. 二叉搜索树的插入
在二叉搜索树中插入一个指定值的结点,只需要从树根向下找到合适的位置插入为叶子结点即可。该过程会形成一条从根到被插入结点的唯一路径。在向下遍历时,如果要插入的值比结点的值小,则向结点的左子树遍历,否则向右子树遍历,如此循环即可。插入的代码如下所示。

二叉搜索树是一种有序二叉树,中序遍历得到非递减序列。插入操作时间复杂度为O(lg(n))。删除操作包括叶子结点、单孩子结点和双孩子结点三种情况。中序遍历通常采用递归实现。二叉搜索树在特定情况下可能导致退化,如顺序插入,此时查询效率降低。为了优化,可以使用AVL树或红黑树等自平衡二叉查找树。
最低0.47元/天 解锁文章
2459

被折叠的 条评论
为什么被折叠?



