关闭

POJ 3261 Milk Patterns

276人阅读 评论(0) 收藏 举报

http://poj.org/problem?id=3261

题意:N头牛,每头牛有一个编号,求可重叠的至少出现K次的最大子串。

思路: 后缀数组+二分 。 二分答案,然后将后缀分成若干组。不同的是,这里要判断的是有没有一个组的后缀个数不小于k。如果有,那么存在k 个相同的子串满足条件,否则不存在。这个做法的时间复杂度为O(nlogn)。

代码: 

#include<stdio.h>
#include<string.h>
#include<iostream>
using namespace std;
#define MAXN 20010
#define MAXN1 1000010
int num[MAXN] ;
int sa[MAXN] , rank[MAXN] ,height[MAXN] ;  
int wa[MAXN1] , wb[MAXN1] ,wv[MAXN1],wd[MAXN1] ;   
int N,M;  
int cmp(int *r , int a , int b , int l){  
    return r[a] == r[b] && r[a+l] == r[b+l] ;     
}  

void DA(int *r,int n,int m){        //O(NlogN)  
    int i, j , p , *x=wa, *y=wb,*t ;  
    for( i = 0 ; i < m ; i++ )   wd[i] = 0 ;  
    for( i = 0 ; i < n ; i++ )       wd[x[i]=r[i]] ++ ;  
    for( i = 1 ; i < m ; i++ )       wd[i] += wd[i-1] ;  
    for( i = n-1 ;i >= 0 ; i-- )     sa[--wd[x[i]]] = i ;  
    for( j = 1 , p = 1 ; p < n; j *= 2 , m=p ){  
        for( p = 0 , i = n-j ; i < n ; i++)  y[p++] = i ;  
        for( i = 0 ; i < n ; i++ )   if(sa[i] >= j)   y[p++] = sa[i] - j ;  
        for( i = 0 ; i < n ; i++)    wv[i] = x[y[i]] ;  
        for( i = 0 ; i < m ; i++)    wd[i] = 0 ;  
        for( i = 0 ; i < n ; i++)    wd[wv[i]] ++ ;  
        for( i = 1 ; i < m ; i++)    wd[i] += wd[i-1] ;  
        for( i = n-1 ; i >= 0 ; i--) sa[ --wd[wv[i]]] = y[i] ;  
        for( t = x , x = y , y = t , p = 1 , x[ sa[0] ] = 0,i = 1;i < n ; i++){  
            x[sa[i]] = cmp( y ,sa[i-1] ,sa[i] , j ) ? p-1: p++;   
        }     
    }  
}   
  
void calHeight(int *r , int n){  
    int i , j , k = 0 ;  
    for( i = 1 ; i <= n ; i++)   rank[sa[i]] = i ;  
    for( i = 0 ; i < n ; height[ rank[i++]]=k){  
        for( k ? k-- : 0 , j=sa[rank[i]-1]; r[i+k]==r[j+k] ; k++) ;   
    }     
}
bool is_ok(int len){
	int i = 1 ;
	while(i <= N){
		while(i <= N && height[i]<len)	i++ ;
		int c = 1 ;
		while(i <= N && height[i]>=len){		//以height[]数组分组
			i++ ;
			c ++ ;	
		}
		if(c >= M)	return true ;
	}	
	return false ;
}

int main(){
	while(scanf("%d %d",&N,&M) == 2){
		for(int i=0;i<N;i++){
			scanf("%d",&num[i]);	
			num[i]++ ;
		}		
		num[N] = 0 ;
		DA(num,N+1,MAXN1);
		calHeight(num, N) ;
		int low, high , mid ;
		low = 1 ; high = N ;
		while(low < high){
			mid = (low + high + 1) >> 1;
			if(is_ok(mid))	
				low = mid ;
			else 
				high = mid - 1;
		}
		printf("%d\n",low);
	}
	return 0 ;	
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:206272次
    • 积分:4187
    • 等级:
    • 排名:第7592名
    • 原创:212篇
    • 转载:17篇
    • 译文:0篇
    • 评论:42条
    最新评论