Ural 1018 Binary Apple Tree 树形dp

原创 2012年03月27日 17:10:17

http://acm.timus.ru/problem.aspx?space=1&num=1018

题意:有一棵苹果树,苹果树的是一棵二叉树,共N个节点,树节点编号为1~N,编号为1的节点为树根,边可理解为树的分枝,每个分支都长着若干个苹果,现在要要求减去若干个分支,保留M个分支,要求这M个分支的苹果数量最多。

思路: 树形dp。 状态转移方程为:dp[root][d] :表示以root为子树的子树,保留最多d条边时最多可以留下的苹果数。

Case1:root没有子孩子 , dp[root][d] = 0 ; return ;

Case 2 : root只有一个孩子 , dp[root][d] = dp[child][d-1] + value[root][child] ;

Case 3 : root 有两个孩子, dp[root][d] = dp[l_child][k] + dp[r_child][d-2-k] + value[root][l_child] + value[root][r_child] , 0<=k<=d-2

注意点:本题中给的孩子与根之间的结点关系只给了值的大小,而没有指定孩子与父亲之间的关系, 因此本题还需要先建树,具体的实现是:用一个f[]数组保存每个结点的父亲结点的编号。每次寻找一个结点root的孩子的时候就可以将f[root]排除在外。

代码:

#include<stdio.h>
#include<string.h>
#define MAX(a,b) (a) > (b) ? (a) : (b) 
int N ,Q ;
int maze[110][110] ;
int dp[110][110] ;
int f[110] ;

int DP(int root, int a){	//已root为根的子树中,保留a条边时的最大苹果数
	int i, j ;
	if(dp[root][a] != -1)	return dp[root][a] ;
	dp[root][a] = 0 ;
	if(a <= 0)	return dp[root][a] ;
	int node[2] ;
	for(i=1,j=0;i<=N;i++){
		if(maze[root][i]==-1 || i==f[root])	continue ;
		node[j++] = i ;
		dp[root][a] = MAX(dp[root][a] , DP(i,a-1)+maze[root][i]);	
	}
	if(j < 2){
		return dp[root][a] ;	
	}
	for(i=1;i<a;i++){
		int res = DP(node[0] , i-1) + DP(node[1] , a-i-1) + maze[root][ node[0] ] + maze[root][ node[1] ];
		dp[root][a] = MAX(dp[root][a] , res);	
	}
	return  dp[root][a] ;
}
void dfs(int root){
	for(int i=1;i<=N;i++){
		if(maze[root][i]==-1 || i==f[root])	continue ;
		f[i] = root ;	
		dfs(i);
	}	
}
int main(){
	int a, b ,c;
	while(scanf("%d %d",&N,&Q) == 2){
		memset(maze, -1 , sizeof(maze));
		for(int i=1;i<N;i++){
			scanf("%d %d %d",&a,&b,&c);	
			maze[a][b] = maze[b][a] = c ;
		}
		memset(f,-1,sizeof(f));
		dfs(1);					//求出每个结点的父结点 
		memset(dp, -1, sizeof(dp));			
		printf("%d\n",DP(1,Q));
	}	
	return 0 ;	
}


相关文章推荐

Ural 1018 Binary Apple Tree (树形DP)

题目链接:(—_—) zZ 题目大意: 有一棵苹果树,苹果树的是一棵二叉树,共N个节点,树节点编号为1~N,编号为1的节点为树根,边可理解为树的分枝,每个分支都长着若干个苹果,现在要要求减去...

Ural 1018 Binary Apple Tree [树形dp]

Binary Apple Tree Time limit: 1.0 second Memory limit: 64 MBLet’s imagine how apple tree looks in ...

简单树形动态规划(Ural 1018 Binary Apple Tree)

极限简单题: 二叉苹果树(apple) Ural 1018 【问题描述】 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点)。这棵树共有N个结点(叶子点或者树枝分叉点...

ural 1018-Binary Apple Tree【树状DP】

1018. Binary Apple Tree Time limit: 1.0 second Memory limit: 64 MB Let's imagine how appl...

URAL 1018 Binary Apple Tree

树形dp
  • sdfzyhx
  • sdfzyhx
  • 2016年10月17日 15:38
  • 139

Ural-1018-Binary Apple Tree

树形DP的一个题,题意是说给你一些树枝,树枝上面有苹果,现在要求你保留其中的Q个,使得苹果树最多,问最多能留住多少个苹果。 对于每个分支结点来说,有三种选择: 1、减去左子树 2、减去右子树 ...

ural 1018 Binary Apple Tree

类型:树形动态规划[经典] 状态:dp(i,j)表示以i为根的子树(还包括i与i的父亲这条边)内,保存j条边最多可以有多少苹果 转移方程:dp(i,j) = max(dp(i.left,k) + ...

ural 1018 binary apple tree

给你一棵二叉树,每条边有一个权值,问你保留从根(1)开始的连在一块的Q条边,能获得的最大值是多少先把边上的权值转到点上,N个点N-1条边,即向根连一条虚拟边,权值为0,每条u->v上的权值转到v上dp...

【poj2486】【Apple Tree】【树形dp】

Apple TreeTime Limit: 1000MS Memory Limit: 65536K Total Submissions: 7893 Accepted: 2642 ...

poj 2486 Apple Tree(树形dp)

/*     说一下做题感受,首先一看就可以确定是一道树形背包问题。     刚开始想的是两个状态来表示(rt,i),但这样的话不好表示从一个子节点回来再去访问另外子结点的情况,     所以就...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:Ural 1018 Binary Apple Tree 树形dp
举报原因:
原因补充:

(最多只允许输入30个字)