关闭

Ural 1018 Binary Apple Tree 树形dp

472人阅读 评论(0) 收藏 举报

http://acm.timus.ru/problem.aspx?space=1&num=1018

题意:有一棵苹果树,苹果树的是一棵二叉树,共N个节点,树节点编号为1~N,编号为1的节点为树根,边可理解为树的分枝,每个分支都长着若干个苹果,现在要要求减去若干个分支,保留M个分支,要求这M个分支的苹果数量最多。

思路: 树形dp。 状态转移方程为:dp[root][d] :表示以root为子树的子树,保留最多d条边时最多可以留下的苹果数。

Case1:root没有子孩子 , dp[root][d] = 0 ; return ;

Case 2 : root只有一个孩子 , dp[root][d] = dp[child][d-1] + value[root][child] ;

Case 3 : root 有两个孩子, dp[root][d] = dp[l_child][k] + dp[r_child][d-2-k] + value[root][l_child] + value[root][r_child] , 0<=k<=d-2

注意点:本题中给的孩子与根之间的结点关系只给了值的大小,而没有指定孩子与父亲之间的关系, 因此本题还需要先建树,具体的实现是:用一个f[]数组保存每个结点的父亲结点的编号。每次寻找一个结点root的孩子的时候就可以将f[root]排除在外。

代码:

#include<stdio.h>
#include<string.h>
#define MAX(a,b) (a) > (b) ? (a) : (b) 
int N ,Q ;
int maze[110][110] ;
int dp[110][110] ;
int f[110] ;

int DP(int root, int a){	//已root为根的子树中,保留a条边时的最大苹果数
	int i, j ;
	if(dp[root][a] != -1)	return dp[root][a] ;
	dp[root][a] = 0 ;
	if(a <= 0)	return dp[root][a] ;
	int node[2] ;
	for(i=1,j=0;i<=N;i++){
		if(maze[root][i]==-1 || i==f[root])	continue ;
		node[j++] = i ;
		dp[root][a] = MAX(dp[root][a] , DP(i,a-1)+maze[root][i]);	
	}
	if(j < 2){
		return dp[root][a] ;	
	}
	for(i=1;i<a;i++){
		int res = DP(node[0] , i-1) + DP(node[1] , a-i-1) + maze[root][ node[0] ] + maze[root][ node[1] ];
		dp[root][a] = MAX(dp[root][a] , res);	
	}
	return  dp[root][a] ;
}
void dfs(int root){
	for(int i=1;i<=N;i++){
		if(maze[root][i]==-1 || i==f[root])	continue ;
		f[i] = root ;	
		dfs(i);
	}	
}
int main(){
	int a, b ,c;
	while(scanf("%d %d",&N,&Q) == 2){
		memset(maze, -1 , sizeof(maze));
		for(int i=1;i<N;i++){
			scanf("%d %d %d",&a,&b,&c);	
			maze[a][b] = maze[b][a] = c ;
		}
		memset(f,-1,sizeof(f));
		dfs(1);					//求出每个结点的父结点 
		memset(dp, -1, sizeof(dp));			
		printf("%d\n",DP(1,Q));
	}	
	return 0 ;	
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:202839次
    • 积分:4161
    • 等级:
    • 排名:第7395名
    • 原创:212篇
    • 转载:17篇
    • 译文:0篇
    • 评论:42条
    最新评论