[BZOJ1492]-[NOI2007]货币兑换Cash-斜率优化+CDQ

说在前面

自己居然蠢到连凸包都可以写错,没救了…


题目

BZOJ1492传送门
这题面太长= =
幸好不是权限题,看题可以进传送门


解法

关于dp式子的推导,在me另一篇动态凸包的题解里,附传送门

假设已经推出转移式,大概是这样 dp[i]=A[i]x+B[i]y d p [ i ] = A [ i ] ∗ x + B [ i ] ∗ y (其中 x=Rate[j]dp[j]A[j]Rate[j]+B[j] x = R a t e [ j ] ∗ d p [ j ] A [ j ] ∗ R a t e [ j ] + B [ j ] y=dp[j]A[j]Rate[j]+B[j] y = d p [ j ] A [ j ] ∗ R a t e [ j ] + B [ j ]
这个式子直接上的复杂度是 Θ(N2) Θ ( N 2 ) 的,时间复杂度不能承受,于是考虑优化。发现转移式是一个直线的表达式,于是想到斜率优化。对式子进行移项,得到 y=A[i]B[i]x+dp[i]B[i] y = − A [ i ] B [ i ] x + d p [ i ] B [ i ] ,其中,我们希望纵截距尽可能大。显然这样的点(x,y)一定在凸包上。
但是这个式子的x和y都不单调,不能用单调队列或者单调栈进行优化,于是可以采用splay维护动态凸包,每次询问就在凸包里二分找到最优的点。然后将新得到的这个点插入凸包中即可。

当然,还有一种更简单的方法,CDQ分治。因为i只能由1到i-1转移过来,于是可以先递归处理左区间,用左区间更新右区间的答案,然后再递归处理右区间。因为左区间的dp值已经求出了,所以可以作出凸包,而右区间的询问按照斜率从大到小排序,这样就可以用两个指针扫一扫完成更新。
左区间的凸包需要x有序,这一步可以用类似归并的思想,右区间询问的顺序也可以预先跑一遍归并处理出来。这样总时间复杂度是 Θ(NlogN) Θ ( N l o g N ) 的。(当然也可以在每一层都sort一遍,上界 Θ(Nlog2N) Θ ( N l o g 2 N ) 也可以过)

关于凸包,凸包只要叉乘小于等于0就必须出栈,因为等于0的情况可能是两个点重在一起,如果后面有更优的点,这两个点就无法出栈了


下面是代码

/**************************************************************
    Problem: 1492
    User: Izumihanako
    Language: C++
    Result: Accepted
    Time:968 ms
    Memory:16448 kb
****************************************************************/

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std ;

int N , seq[18][100005] ;
double dp[100006] , A[100005] , B[100005] , R[100006] , slo[100005] ;
struct Point{
    double x , y ;
} p[100005] , cvx[100005] , tmp[100005] ;

typedef Point Vector ;
Vector operator + ( const Vector &A , const Vector &B ){ return ( Vector ){ A.x + B.x , A.y + B.y } ; }
Vector operator - ( const Vector &A , const Vector &B ){ return ( Vector ){ A.x - B.x , A.y - B.y } ; }
double cross( const Vector &A , const Vector &B ){ return A.x * B.y - A.y * B.x ; }
double slope( const Point &A , const Point &B ){ return ( B.y - A.y ) / ( B.x - A.x ) ; } ;

void mergeSort( int dep , int lf , int rg ){
    if( lf == rg ) return ( void )( seq[dep][lf] = lf ) ;
    int mid = ( lf + rg ) >> 1 , Lpt = lf , Rpt = mid + 1 , pt = lf ;
    mergeSort( dep + 1 , lf , mid ) ;
    mergeSort( dep + 1 , mid+1,rg ) ;
    while( Lpt <= mid && Rpt <= rg ){
        if( slo[ seq[dep+1][Lpt] ] >= slo[ seq[dep+1][Rpt] ] )
            seq[dep][pt] = seq[dep+1][Lpt] , Lpt ++ , pt ++ ;
        else
            seq[dep][pt] = seq[dep+1][Rpt] , Rpt ++ , pt ++ ;
    }
    while( Lpt <= mid ) seq[dep][pt] = seq[dep+1][Lpt] , pt ++ , Lpt ++ ;
    while( Rpt <=  rg ) seq[dep][pt] = seq[dep+1][Rpt] , pt ++ , Rpt ++ ;
}

void CDQ( int dep , int lf , int rg ){
    if( lf == rg ){
        dp[lf] = max( dp[lf] , dp[lf-1] ) ;
        double tmp = dp[lf] / ( A[lf] * R[lf] + B[lf] ) ;
        p[lf] = ( Point ){ R[lf] * tmp , tmp } ;
        return ;
    }
    int mid = ( lf + rg ) >> 1 , topp = 0 ;
    CDQ( dep + 1 , lf , mid ) ;
    // convex
    for( int i = lf ; i <= mid ; i ++ ){
        while( topp > 1 && cross( p[i] - cvx[topp-1] , cvx[topp] - cvx[topp-1] ) <= 0 ) topp -- ;
        cvx[++topp] = p[i] ;
    }
    // update dp[]
    for( int i = mid + 1 , pt = 1 ; i <= rg ; i ++ ){
        int id = seq[dep][i] ;
        while( pt < topp && slope( cvx[pt] , cvx[pt+1] ) > slo[id] ) pt ++ ;
        dp[id] = max( dp[id] , A[id] * cvx[pt].x + B[id] * cvx[pt].y ) ;
    }
    CDQ( dep + 1 , mid+1,rg ) ;
    //sort point by x , preparing for upper
    int Lpt = lf , Rpt = mid + 1 , pt = lf ;
    while( Lpt <= mid && Rpt <= rg ){
        if( p[Lpt].x <= p[Rpt].x ) tmp[pt] = p[Lpt] , pt ++ , Lpt ++ ;
        else                       tmp[pt] = p[Rpt] , pt ++ , Rpt ++ ;
    }
    while( Lpt <= mid ) tmp[pt] = p[Lpt] , pt ++ , Lpt ++ ;
    while( Rpt <=  rg ) tmp[pt] = p[Rpt] , pt ++ , Rpt ++ ;
    for( int i = lf ; i <= rg ; i ++ ) p[i] = tmp[i] ;
}

void solve(){
    mergeSort( 0 , 1 , N ) ;
    CDQ( 1 , 1 , N ) ;
    printf( "%.3f" , dp[N] ) ;
}

int main(){
    scanf( "%d%lf" , &N , &dp[0] ) ;
    for( int i = 1 ; i <= N ; i ++ ){
        scanf( "%lf%lf%lf" , &A[i] , &B[i] , &R[i] ) ;
        slo[i] = - A[i] / B[i] ;
    }
    solve() ;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: bzoj[1597][usaco2008 mar]土地购买 斜率优化 这道题是一道经典的斜率优化题目,需要用到单调队列的思想。 首先,我们可以将题目中的式子进行变形,得到: f[i] = f[j] + (sum[i] - sum[j] - m) ^ 2 + k 其中,sum[i] 表示前缀和,m 和 k 都是常数。 我们可以将式子中的 sum[i] 和 k 看作常数,那么我们需要优化的就是 (sum[i] - sum[j] - m) ^ 2 这一项。 我们可以将其展开,得到: (sum[i] - sum[j] - m) ^ 2 = sum[i] ^ 2 - 2 * sum[i] * (sum[j] + m) + (sum[j] + m) ^ 2 我们可以将其看作一个二次函数,其中 a = 1,b = -2 * (sum[j] + m),c = (sum[j] + m) ^ 2。 我们可以发现,当 j < k 时,如果 f[j] + a * sum[j] + b * sum[j] <= f[k] + a * sum[k] + b * sum[k],那么 j 就不可能是最优决策点,因为 k 比 j 更优。 因此,我们可以用单调队列来维护决策点。具体来说,我们可以维护一个单调递增的队列 q,其中 q[i] 表示第 i 个决策点的下标。每次加入一个新的决策点 i 时,我们可以将队列尾部的决策点 j 弹出,直到队列为空或者 f[j] + a * sum[j] + b * sum[j] <= f[i] + a * sum[i] + b * sum[i]。然后,我们将 i 加入队列尾部。 最后,队列头部的决策点就是最优决策点。我们可以用类似于双指针的方法来维护队列头部的决策点是否在当前区间内,如果不在,就弹出队列头部。 时间复杂度为 O(n)。 ### 回答2: 这道题目属于斜率优化的经典题目,难度较高,需要掌握一定的数学知识。 首先,我们可以将题目中的“最大利润”转化为“最小成本”,这样问题就变成了找到一个方案,使得购买土地的成本最小。 接着,我们考虑如何用斜率优化来解决这个问题。我们可以定义一个函数f(i),表示前i块土地的最小成本。 显然,f(1)=0,因为不需要购买任何土地。 对于f(i),它可以由f(j)+b(i)×a(j+1)得到,其中j<i,a(j+1)表示第j+1块土地的面积,b(i)表示第i块土地的价格。这个式子的含义是,我们现在要购买第i块土地,那么前面的土地(即前j块)就都要买,所以f(j)表示前j块土地的最小成本,b(i)×a(j+1)表示购买第i块土地的成本。 那么,我们可以得到递推公式: f(i)=min{f(j)+b(i)×a(j+1)},其中j<i。 这个公式看起来很简单,但是要注意的是,当b(i)×a(j+1)的斜率相同时,我们需要取其中面积较小的土地,因为它的价格更低。因此,我们需要对斜率进行排序,并在递推中用单调队列维护斜率相等的情况下面积最小的土地。 最终,f(n)就是题目所求的最小成本。 总之,这道题目需要深入理解斜率优化算法的原理和实现方式,并且需要注意细节处理,如果能够顺利地解决这个问题,那么对于斜率优化算法的掌握程度就有了很大的提升。 ### 回答3: 土地购买问题可以采用斜率优化算法来解决。这个问题可以转化为一个单调队列的问题。 首先,我们需要对土地价格按照边长从小到大排序。然后,对于每块土地,我们需要求出它的贡献。设 $f_i$ 表示前 $i$ 块土地连续的最小代价。 设当前处理到第 $i$ 块土地,已经求出了前 $j$ 块土地的最小代价 $f_j$。那么我们可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 式子中,$S_i$ 表示前 $i$ 块土地的边长和,$P$ 表示额外购买土地的代价。首先,不考虑额外购买土地,我们可以使用动态规划来求出 $f_i$。但是,考虑到额外购买土地的代价 $P$ 是一个固定值,我们可以考虑将它与某一块土地的代价合并起来,这样就可以使用斜率优化技术来优化动态规划算法。 我们定义一个决策点 $j$,表示我们当前要处理第 $i$ 块土地时,已经处理过 $j$ 块土地,并将第 $j+1$ 块土地到第 $i$ 块土地购买,所需的最小代价。我们假设 $S_i>S_j$,则可以得到下面这个式子: $$ f_i=\min\limits_{j=1}^{i-1}\{f_j+(S_i-S_j)^2+P\} $$ 将它整理成斜率截距式可以得到: $$ y=kx+b $$ 其中 $k=(S_j)^2-2S_iS_j$,$b=f_j+(S_i)^2+P-S_j^2$,$x=S_j$,$y=f_j+(S_j-S_i)^2-S_j^2$。我们发现 $k$ 是一个单调递减的函数,因此我们可以使用一个单调队列来维护所有可能成为决策点的点。对于每个点,我们计算函数 $y$ 的值并将它们加入队列,然后取队头元素的值作为 $f_i$。 综上所述,我们可以使用斜率优化技术来解决土地购买问题,时间复杂度为 $O(n)$。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值