数据挖掘导论 (三)

原创 2016年06月01日 09:59:55

第三章 探索数据

汇总统计

频率和众数

频率:即该类的数量占总数的百分比
分类属性的众数:具有最高频率的值

百分位数计算:其实就是计算低于P%的数据的最大值

第1步:以递增顺序排列原始数据(即从小到大排列)。

第2步:计算指数i=np%

第3步:

  l)若 i 不是整数,将 i 向上取整。大于i的毗邻整数即为第p百分位数的位置。

  2) 若i是整数,则第p百分位数是第i项与第(i+l)项数据的平均值。

下面我们开始计算P10:

  1. 按照上述的计算公式i=n*p%=10*10%=1,其中n为1到10的整数个数,也就是10,P=10,所以我们得到i=1
     
  2. i=1是整数,那我们计算P10=(x(i)+x(i+1))/2=(1+2)/2=1.5

剩下的大家可以按照这个公式以此计算了。

均值和中位数


均值:就是数据的平均值 中位数:数据最中间的数(但是要从小到大顺序排列)
因为均值对于离群值很敏感,有时使用截断均值。指定0和100间的百分位数p,丢弃高端和低端的(p/2)%的数据,然后计算均值。意思就是说,把前(p/2)%和后(p/2)%的数据扔掉,计算中间的数据均值 就能避免离群值。

极差和方差


极差:最大值与最小值的差
方差:每个数与平均值的差的均方误差。用以体现变化程度因为均值受离群值影响,所以方差也很敏感。

绝对平均偏差 AAD ,中位数绝对偏差 MAD  ,四分位数极差IQR


多元汇总统计

协方差矩阵:由不同属性的协方差构成的矩阵

协方差上的对角线,是属性的方差。即
对于数据探索,相关性矩阵比协方差更可取,表示每两个属性的相关性。


可视化

一般概念

  1. 表示:将数据映射到图形元素 即选择什么样的图
  2. 安排:即如何排列数据 呈现更好的效果
  3. 选择:即选择要可视化的属性 是否需要删除或不突出某些属性

技术

  • 少量属性的可视化
1、茎叶图:可以用来观测一维整形或连续型数据的分布。茎是高位数字,叶是低位数字 如图


2、直方图:将茎叶图用条形图来表示


3、二维直方图:将每个属性划分成区间,两个区间集定义值。


4、盒装图:盒的上端是第75个百分位数,下端是第25个百分位数,盒中的线是第五十个百分位数的值。


5、饼图:通常用于相对较少的分类属性,用面积表示相对频率。但是在技术上,平方图更可取。因为相对面积大小很难确定


6、散布图
用途:1、图形化地显示两个属性之间的关系。2、当类标号给出时,考察两个属性将类分开的程度。


使用散布图的方法:也可以根据三个属性而不是两个属性来显示每个对象

  • 可视化时间空间数据
1、等高线图:描述温度或海拔高度

2、曲面图:描述数学函数,或变化相对光滑的物理曲面


  • 可视化高维数据
1、矩阵:存储图像的亮度和颜色(如果类标号已知,重新排列次序,让同类的对象聚集在一起,是很有用的方法。如果属性列值域不同,则要进行标准化,让均值为0,标准差为1,避免值大的属性左右图形


2、平行坐标系:每个属性一个坐标轴,相互平行,最后用连线连接
缺点:如果线交叉太多,则图形会变得模糊不清。需要安排坐标轴,以得到较少交叉的坐标轴序列

3、星型坐标和Chernoff脸


注意事项

理解,清晰性,一致性,有效性,必要性,真实性

OLAP和多维数据分析

事实表:

用多维数组表示数据



步骤:1、维的识别  2、分析所关注的属性的识别

分析多维数据

数据立方体:计算聚集量 (计算边缘总和)

维规约和转轴(减少维度,转轴:在除两个维之外的所有维上聚集,即只保留两个维)







版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

数据挖掘导论读书笔记

本文主要对相关系数做出介绍,了解各种相似性和相异性度量的方法,以及适用的场景,以后该方法的优缺点。 一、 数据类型  首先进行数据的类型进行介绍:在统计学上,将数据分为定性和定量两种类型...

【数据挖掘导论】——绪论

数据挖掘导论读书笔记之绪论 数据挖掘的前提:数据收集和数据存储技术的快速进步。 数据挖掘是一种技术,它将传统的数据分析方法与处理大量数据的复杂算法相结合。为探查和分析新的数据类型以及用新方...

数据挖掘导论

20世纪60年代,从文件处理演化到数据库系统; 20世纪70年代,演化到关系数据库,联机事务处理(OLTP)将查询看做只读事务; 80年代中期到现在,研究分布性、多样性和数据共享等问题,还有基于I...
  • jpmf007
  • jpmf007
  • 2013年03月15日 18:06
  • 562

数据挖掘导论 之 聚类分析

这篇文章对《数据挖掘导论》中聚类分析这部分做一个总结。

《数据挖掘导论》学习笔记-离散化

什么是离散化: 连续属性的离散化就是将连续属性的值域上,将值域划分为若干个离散的区间,最后用不同的符号或整数 值代表落在每个子区间中的属性值。 为什么要离散化 连续属性离散化的目的是为了简化数据结构,...

《数据挖掘导论》学习笔记-特征创建

根据原有的属性我们可以创建出新的属性集,而且新的属性数目可能少于原有的属性数目,也就是降维。 创建新的属性的方法有三种:特征提取、映射数据到新的空间、特征构造 1、特征提取 定义:根据原有的数据自己创...

数据挖掘导论 笔记

引论 1.1为什么进行数据挖掘? 信息时代的来临不贴切,我们的时代其实是数据时代,还没有真正步入信息时代,现在数据爆炸增长,需要将数据转化为知识。 1.2什么是数据挖掘? 即KDD,数据中的数据发现 ...

《数据挖掘导论》学习笔记(第1-2章)

《数据挖掘导论》 学习笔记 本文主要是在学习《数据挖掘导论(完整版)》中第1章至第2章的学习笔记,主要用来梳理思路,并没有多少思考,我尽量会在后期多弥补这方面的不足。...

【笔记】数据挖掘导论(持续更新)

第一章 绪论数据分析技术的应用: 商务、医学、科学与工程数据挖掘:在大型数据存储库中,自动地发现有用信息的过程。 与信息检索不同。 KDD:knowledge discovery in data...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:数据挖掘导论 (三)
举报原因:
原因补充:

(最多只允许输入30个字)