算法导论复习(2) 归并排序

原创 2017年04月28日 21:14:03

归并排序时间复杂度
平均: θ(nlgn) 最好: O (nlgn) 最坏:O(nlgn)
空间复杂度:O(1)
课本在讲归并排序之前,先大致介绍了分治法。其中列出了分治模式在每层递归时的三个步骤

分解(将原问题分解成多个子问题)
解决(对子问题进行求解)
合并(将子问题解合并成原问题解)

随后,已上文三个步骤为模板,分析了归并排序的分治策略

  1. n元素序列分为n/2个元素的两个子序列
  2. 使用归并排序递归排序子序列
  3. 合并子序列得到答案

代码分析:
1.子问题的伪代码

MERGE(A,p,q,r)  (A:被排序的数组p:数组头q:数组中r:数组尾)
n1=q-p+1
n2=r-q
//let L[1..n+1]and R[1..n2+1]be new array  (创建子问题数组)
for i =1 to n1
L[i]=A[p+i-1]                  
for j=1 to n2
R[j]=A[q+j]
L[n1+1]=∞            
L[n2+1]=∞ 
i=1
j=1
for k=p to r
if L[i]<=R[j]
else A[k]=R[j]
j+=1 

主体归并伪代码
MERGE-SORT(A,p,r)
if(p<r)
q=(p+r)/2下界
MERGE-SORT(A,p,q)             (左半子问题)           
MERGE-SORT(A,q+1,r)          (右半子问题)
MERGE(A,p,q,r)           (归并子问题)

实现代码(C++)

#include <iostream>
using namespace std;
void sort(int*&a, int p, int q, int r)
{
  int* left =new int[q - p +1];
  int* right =new int[r - q];
  for(int i =0; i < q - p +1; i++)
    left[i] = a[p + i];
  for(int i =0; i < r - q; i++)
    right[i] = a[q + i +1];

  int m =0;
  int n =0;
  for(int i = p; i <= r; i++) {
    if(left[m] <= right[n]) {
      a[i] = left[m];
      if(m++== q-p)
      {
        for(int j = i +1; j <= r; j++)
          a[j] = right[n++];
        break;
      }
    } 
    else {
      a[i] = right[n];
      if(n++== r-q-1) {
    for(int j = i +1; j <= r; j++)
      a[j] = left[m++];
    break;
      }
    }
  }

  delete[] left;
  delete[] right;
}
void merge(int*&a, int m, int n)
{
    int i;
  if(m < n) {
    int q = (m + n)/2;
    merge(a, m, q);
    merge(a, q+1, n);
    sort(a, m, q, n); 
  }
}
int main()
{
    int n;
    int j;
    cin>>n;
    int* b =new int[100];
    int* a =new int[100];
    for(int i =0; i <n; i++)
    cin>>a[i];
    merge(a, 0, n-1);
    for(j=0;j<n;j++)
    {
        cout<<a[j]<<" ";
        b[j]=a[j];
    }
    cout<<endl;
  return 0;
}

算法分析
1.分解运行时间
分解:O(1)
解决:子问题规模为(n/2) 消耗 2T(n/2)运行时间
合并:n个元素进行MERGE需要θ(n)时间
2.递归式
这里写图片描述
画出递归树可以看到,树高lgn 每一层代价c(n),然后树根代价c(n),总代价cnlgn+cn 所以时间复杂度θ(nlgn)。

累了,暂时先发布,有时间再修改~!

版权声明:本文为博主原创文章,未经博主允许不得转载。

算法导论——归并排序

算法的设计有很多思想,之前的插入排序使用的是增量的方法,即在排好的子数组A中,将元素A[j]插入,形成新的子数组A。 这次将实现另一种排序——归并排序,归并排序采用了“分治法”(divide-and-...
  • Anger_Coder
  • Anger_Coder
  • 2013年09月30日 11:16
  • 2489

【算法导论】归并排序

归并排序算法分析,欢迎拍砖!
  • cyp331203
  • cyp331203
  • 2014年12月02日 21:42
  • 1029

算法导论学习:归并排序法的实现

上回学习了最简单也是最直接的插入排序。插入排序在小数据量时是很高效的,但是遇到大数据时,便显得无力了,今天来介绍归并排序,在大数据排序时,时间短,但同时它的空间使用率就显得高了。 第二章...
  • qq_17256847
  • qq_17256847
  • 2016年04月14日 16:13
  • 264

算法导论第二章总结:插入排序、归并排序

算法导论第二章总结                             这一章简要介绍了一个贯穿全书的框架。对于这个框架,我的理解就是算法的流程吧。         (1)   问题:算法需要实...
  • LuckyJune34
  • LuckyJune34
  • 2015年05月21日 19:27
  • 1438

算法导论-6.5-9 使用最小堆完成k路归并算法

//基于最小堆的K路归并算法 #include #include #include using namespace std; typedef struct node{ int value; ...
  • shakingWaves
  • shakingWaves
  • 2014年01月05日 15:05
  • 1208

白话经典算法系列之五 归并排序的实现(讲的真好)

归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。 首先考虑下如何将将二个有序数列合并。这个非常简单,只要从比较...
  • yuehailin
  • yuehailin
  • 2017年04月03日 16:25
  • 14592

归并排序算法原理分析与代码实现

归并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用,归并排序将两个已排序的表合并成一个表。      归并排序基本原理 ...
  • sdgihshdv
  • sdgihshdv
  • 2017年05月04日 22:13
  • 508

归并排序 图解算法过程

归并排序,图解,详细过程。
  • collonn
  • collonn
  • 2013年12月26日 14:09
  • 7655

算法 - 归并排序(C#)

/* * MergeSorter.cs - by Chimomo * * 归并排序是建立在归并操作上的排序算法,该算法是分而治之策略(Divide and Conquer)的一个非常典型的应用...
  • chimomo
  • chimomo
  • 2014年12月03日 17:28
  • 2488

排序算法系列:归并排序算法

上一篇我们说了一个非常简单的排序算法——选择排序。其复杂程序完全是冒泡级的,甚至比冒泡还要简单。今天要说的是一个相对比较复杂的排序算法——归并排序。复杂的原因不仅在于归并排序分成了两个部分进行解决问题...
  • u013761665
  • u013761665
  • 2016年05月27日 16:32
  • 9034
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:算法导论复习(2) 归并排序
举报原因:
原因补充:

(最多只允许输入30个字)