算法导论复习(2) 归并排序

原创 2017年04月28日 21:14:03

归并排序时间复杂度
平均: θ(nlgn) 最好: O (nlgn) 最坏:O(nlgn)
空间复杂度:O(1)
课本在讲归并排序之前,先大致介绍了分治法。其中列出了分治模式在每层递归时的三个步骤

分解(将原问题分解成多个子问题)
解决(对子问题进行求解)
合并(将子问题解合并成原问题解)

随后,已上文三个步骤为模板,分析了归并排序的分治策略

  1. n元素序列分为n/2个元素的两个子序列
  2. 使用归并排序递归排序子序列
  3. 合并子序列得到答案

代码分析:
1.子问题的伪代码

MERGE(A,p,q,r)  (A:被排序的数组p:数组头q:数组中r:数组尾)
n1=q-p+1
n2=r-q
//let L[1..n+1]and R[1..n2+1]be new array  (创建子问题数组)
for i =1 to n1
L[i]=A[p+i-1]                  
for j=1 to n2
R[j]=A[q+j]
L[n1+1]=∞            
L[n2+1]=∞ 
i=1
j=1
for k=p to r
if L[i]<=R[j]
else A[k]=R[j]
j+=1 

主体归并伪代码
MERGE-SORT(A,p,r)
if(p<r)
q=(p+r)/2下界
MERGE-SORT(A,p,q)             (左半子问题)           
MERGE-SORT(A,q+1,r)          (右半子问题)
MERGE(A,p,q,r)           (归并子问题)

实现代码(C++)

#include <iostream>
using namespace std;
void sort(int*&a, int p, int q, int r)
{
  int* left =new int[q - p +1];
  int* right =new int[r - q];
  for(int i =0; i < q - p +1; i++)
    left[i] = a[p + i];
  for(int i =0; i < r - q; i++)
    right[i] = a[q + i +1];

  int m =0;
  int n =0;
  for(int i = p; i <= r; i++) {
    if(left[m] <= right[n]) {
      a[i] = left[m];
      if(m++== q-p)
      {
        for(int j = i +1; j <= r; j++)
          a[j] = right[n++];
        break;
      }
    } 
    else {
      a[i] = right[n];
      if(n++== r-q-1) {
    for(int j = i +1; j <= r; j++)
      a[j] = left[m++];
    break;
      }
    }
  }

  delete[] left;
  delete[] right;
}
void merge(int*&a, int m, int n)
{
    int i;
  if(m < n) {
    int q = (m + n)/2;
    merge(a, m, q);
    merge(a, q+1, n);
    sort(a, m, q, n); 
  }
}
int main()
{
    int n;
    int j;
    cin>>n;
    int* b =new int[100];
    int* a =new int[100];
    for(int i =0; i <n; i++)
    cin>>a[i];
    merge(a, 0, n-1);
    for(j=0;j<n;j++)
    {
        cout<<a[j]<<" ";
        b[j]=a[j];
    }
    cout<<endl;
  return 0;
}

算法分析
1.分解运行时间
分解:O(1)
解决:子问题规模为(n/2) 消耗 2T(n/2)运行时间
合并:n个元素进行MERGE需要θ(n)时间
2.递归式
这里写图片描述
画出递归树可以看到,树高lgn 每一层代价c(n),然后树根代价c(n),总代价cnlgn+cn 所以时间复杂度θ(nlgn)。

累了,暂时先发布,有时间再修改~!

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

算法导论——2.3-2无哨兵情况下的归并排序

没有哨兵时,可以设置一个判断,只要2个分数组的一个到达底端就把另一个的后续元素赋给原数组。具体如下: #include using namespace std; const int sentry ...

【算法导论】2-2 二路归并排序(分治)merge-sort 和逆序对的问题

#include using namespace std; //二路排序算法,书p17 正确性证明见p18-19 void merge(int *b,int p,int q,int r) ...

《算法导论》学习笔记:归并排序

首先对《算法导论》的伪代码部分做几点说明,有些部分确实很蛋疼: 1. 缩进表示块结构。 2. 变量默认是局部变量 3. 数组的序号是面向人的方式,即从1开始计数,而不是C...

算法导论 归并排序解决逆序数

算法导论上对归并排序的算法描述如下 基本思想是将序列分成两部分 L R,然后合并,L R 是有序的算法的合并过程: Pseudocode: MERGE(A, p, q, r ) n1 ← q − p...

算法导论一——关于MergeSort(归并排序)总结

Merge_Sort总结在这个算法中,思想相对简单: 1. 首先将原有序列分解为两个小的序列,分别进行排序 2. 使用同1中的方法对两个序列进行操作 3. 合并两个已排序序列,生成一个有序序列m...
  • showgp
  • showgp
  • 2016年03月28日 21:38
  • 267

算法导论学习之归并排序

惭愧,又好久没看《算法导论》了。上次看《算法导论》的归并排序算法,后来自己写了段代码,实现了算法,不过有问题,一直也没找出问题来。今天趁着礼拜天有时间,调试一下代码。时间不早了,明天还得上班,有时间我...

【算法导论】归并排序

归并排序算法分析,欢迎拍砖!

《算法导论》--归并排序

#include using namespace std; void merge(int *arr, int left, int mid, int right) { int i, j,k; in...

再读算法导论关于归并排序

回顾算法导论的第一个讲解的算法就是归并排序,我们把归并排序分解为两个步骤,第一步考虑如何进行归并,第二步把问题分解为多次归并排序和归并,这是一个典型的分治思想。 每一层的调用有三个步骤: 分解:将...
  • xueyunf
  • xueyunf
  • 2013年04月23日 11:20
  • 1047

算法导论第二章之归并排序

归并算法即一种分治策略,将大问题划分为n个小问题,然后对n小问题求解组合成大问题的解。 在使用递归的分治排序中,涉及三个问题:一、小问题的不可划分的或者终止条件;二、数组的拆分;三、已排序的两个数组的...
  • yu3wu4
  • yu3wu4
  • 2016年11月14日 10:47
  • 111
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:算法导论复习(2) 归并排序
举报原因:
原因补充:

(最多只允许输入30个字)