Given a non-empty array containing only positive integers, find if the array can be partitioned into two subsets such that the sum of elements in both subsets is equal.
Note:
Each of the array element will not exceed 100.
The array size will not exceed 200.
Example 1:
Input: [1, 5, 11, 5]
Output: true
Explanation: The array can be partitioned as [1, 5, 5] and [11].
Example 2:
Input: [1, 2, 3, 5]
Output: false
Explanation: The array cannot be partitioned into equal sum subsets.
这道题可以使用DFS来做,但是会超时,我想到了使用DP动态规划,但是忘记又该怎么做了,这道题又一次给了一个警醒,DP动态规划真的是很难得,不过本题还是很简单了的dp[i]表示和为i是否可以被满足
这道题给了我们一个数组,问我们这个数组能不能分成两个非空子集合,使得两个子集合的元素之和相同。那么我们想,原数组所有数字和一定是偶数,不然根本无法拆成两个和相同的子集合,那么我们只需要算出原数组的数字之和,然后除以2,就是我们的target,那么问题就转换为能不能找到一个非空子集合,使得其数字之和为target。开始我想的是遍历所有子集合,算和,但是这种方法无法通过OJ的大数据集合。于是乎,动态规划DP就是我们的不二之选。我们定义一个一维的dp数组,其中dp[i]表示数字i是否是原数组的任意个子集合之和,那么我们我们最后只需要返回dp[target]就行了。我们初始化dp[0]为true,由于题目中限制了所有数字为正数,那么我们就不用担心会出现和为0或者负数的情况。那么关键问题就是要找出递归公式了,我们需要遍历原数组中的数字,对于遍历到的每个数字nums[i],我们需要更新我们的dp数组,要更新[nums[i], target]之间的值,那么对于这个区间中的任意一个数字j,如果dp[j - nums[i]]为true的话,那么dp[j]就一定为true,于是地推公式如下:
dp[j] = dp[j] || dp[j - nums[i]] (nums[i] <= j <= target)
本题建议和leetcode 698. Partition to K Equal Sum Subsets K个子集 + 深度优先搜索DFS 一起学习
建议和这一道题leetcode 518. Coin Change 2 动态规划DP 、leetcode 279. Perfect Squares 类似背包问题 + 很简单的动态规划DP解决 、leetcode 377. Combination Sum IV 组合之和 + DP动态规划 + DFS深度优先遍历一起学习
还有leetcode 474. Ones and Zeroes若干0和1组成字符串最大数量+动态规划DP+背包问题
代码如下:
#include <iostream>
#include <vector>
#include <map>
#include <unordered_map>
#include <set>
#include <unordered_set>
#include <queue>
#include <stack>
#include <string>
#include <climits>
#include <algorithm>
#include <sstream>
#include <functional>
#include <bitset>
#include <numeric>
#include <cmath>
#include <regex>
#include <iomanip>
#include <cstdlib>
#include <ctime>
using namespace std;
class Solution
{
public:
bool canPartition(vector<int>& nums)
{
int sum = accumulate(nums.begin(), nums.end(), 0);
if (sum % 2 != 0)
return false;
int target = sum / 2;
vector<bool> dp(target + 1, false);
dp[0] = true;
for (int num : nums)
{
for (int i = target; i >= num; i--)
{
dp[i] = dp[i] || dp[i - num];
}
}
return dp[target];
}
bool canPartitionBYDFS(vector<int>& a)
{
int sum = accumulate(a.begin(), a.end(), 0);
if (sum % 2 != 0)
return false;
vector<bool> visit(a.size(), false);
return dfs(a, visit, sum / 2, 0,0);
}
bool dfs(vector<int>& a, vector<bool>& visit,int tar,int sum,int start)
{
if (sum > tar)
return false;
else if (sum == tar)
return true;
else
{
for (int i = start; i < a.size(); i++)
{
if (visit[i] == false)
{
visit[i] = true;
if (dfs(a, visit, tar, sum + a[i],i+1))
return true;
visit[i] = false;
}
}
return false;
}
}
};