计算机分类

原创 2007年09月21日 17:00:00

计算机分类

传统上,计算机根据其技术、功能用途、体积大小、价格和性能分为五类。但是这些分类随着技术的发展而变化。不同种类计算机之间的分界线非常模糊,随着更多高性能计算机的出现,它们之间相互渗透。  

因为每种计算机的特性随着技术发展而变化和相互渗透,很难将一台具体的计算机归为某类。所以,如果你要将一台具体计算机归类,就要查看其销售资料来了解其厂商如何给其归类。

 

专用计算机(Special-purpose computer/ 嵌入式计算机(Embedded computer

具有面向特定电子设备的专门计算能力,一般被嵌入在特定的电子设备中,直接控制电子设备,具有广泛的发展前途。常见的有车载装置、个人数字助理(PDA, Personal Digital Assistant)、手机等。

 

微型计算机(微机,Microcomputer

微机,即我们通常所说的个人计算机PC,大家在平时经常见到。它又大致包括个人PCDesktop)、工作站(Workstation)、PC服务器(PC Server)等等。

 

小型计算机(小型机,Minicomputer

小型机比微机稍大,而且具有比微机更强的数据处理能力和数据存储能力。目前主要用作服务器。

主机(大型机,Mainframe computer

具有比小型机更强的数据处理能力,可以提供高可靠性、高数据安全性和中心控制,一般用于为政府或大型企业的大量数据提供集中的存储、处理和管理。例如,在银行等最早使用计算机的行业中广泛使用。

价格比小型机更高,对我们这些穷人来说简直是天文数字。一台IBM大型机大概要上百万美元。

超级计算机(Supercomputer

超级计算机拥有最强的并行计算能力,主要用于科学计算。在气象、军事、能源等领域承担大规模、高速度的计算任务。

趋势是用许多台计算机构成一台超级计算机。

 

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

计算机网络ip地址分类及含义

1、 0-—127。A类网络号码范围是0.0.0.0---127.0.0.0,用于128个网络。但网 络不能近由0组成且127.0.0.0保留用于回路。剩下的126个网络,1到126,共 有167...

深度学习与计算机视觉系列(3)_线性SVM与SoftMax分类器

作者: 寒小阳 时间:2015年11月。 出处:http://blog.csdn.net/han_xiaoyang/article/details/49999299 声明:版权所有,转载请注...

深度学习与计算机视觉系列(2)_图像分类与KNN

作者: 寒小阳 时间:2015年11月。 出处:http://blog.csdn.net/han_xiaoyang/article/details/49949535 声明:版权所有,...

网上整理很好的计算机分类推荐书目

以前在网上看到别人整理的:  各种计算机语言的经典书籍  1、Java  Java编程语言(第三版)---Java四大名著----James Gosling(Java之父)  Ja...

【计算机网络】IP分类 和 网络IP 的关系

我们知道IP地址分为5类:A,B,C,D,E。而且看到高手时常把它们挂在嘴边。我们知道这5类IP,但是却不知道我们天天用的公网IP是哪一类地址(大部分为C类)。百度了,也都是CV党,完全不知所云。今天...
  • TBWood
  • TBWood
  • 2013-10-20 20:14
  • 2582

连广场舞阿嫲都听得懂的机器学习实例1 - 通过Sklearn KNN分类算法让计算机知道这是什么花

版权声明:本文为Derek Wong 原创文章,转载请带人源网址。

计算机视觉中对训练数据处理以提高分类器性能的技巧

在看《Computer Vision:A Mordern Approach》第二版中关于“分类”一章时,书中讲道了处理图像训练数据的两个非常有用的tricks,即数据增强和bootstraping,特...

计算机网络--TCP/IP网络端口分类规则

端口基础 什么是端口? TCP/IP协议中的端口指的是什么呢?如果把IP地址比作一间房子,端口就是出入这间房子的门。真正的房子只有几个门,但是一个IP地址的端口 可以有65536个之多,端口是通...

计算机视觉(图像分类、检测、分割)数据集和比赛

1 ImageNet数据集和ILSVRCImagenet数据集是目前深度学习图像领域应用得非常多的一个数据集,关于图像分类、定位、检测等研究工作大多基于此数据集展开。Imagenet数据集有1400多...

深度学习与计算机视觉系列(3)_线性SVM与SoftMax分类器

这个部分我们介绍一类新的分类器方法,而对其的改进和启发也能帮助我们自然而然地过渡到深度学习中的卷积神经网。有两个重要的概念: 得分函数/score function:将原始数据映射到每个类的打分的函...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)