标准正态分布alpha分位点

标准正态分布alpha分位点指的是标准正态分布 X~N(0,1)中X大于z_a的概率alpha.

我们知道,标准正态分布的均值是0,方差是1,左右一个方差内的概率是68%,两个方差内是95%,三个方差内是99%。

于是X落在三个方差外的概率约为0.3%,而只记右边的话就仅有0.1%。

看下表:


X>z_a的概率的确只有0.1%

所以alpha分位点与概率分布函数表都是对正态分布的累计描述。


  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
假设资产收益率服从正态分布 $N(\mu, \sigma^2)$,其中 $\mu$ 为期望收益率,$\sigma$ 为标准差。设 $X$ 为投资组合在未来的 $1$ 天内的损失,其概率密度函数为 $f(x)$。 VaR 的定义为在一定置信水平下,未来一天的最大可能损失,即满足 $P(X \leq VaR) = \alpha$,其中 $\alpha$ 为置信水平。 根据正态分布的性质,$X$ 的布函数为 $F(x)=\dfrac{1}{\sigma\sqrt{2\pi}}\int_{-\infty}^{x}e^{-\frac{(t-\mu)^2}{2\sigma^2}}dt$。将置信水平 $\alpha$ 转化为对应的位点 $z_\alpha$,即 $P(Z\leq z_\alpha)=\alpha$,其中 $Z$ 是标准正态分布。则有: $$ VaR = -\sigma z_\alpha + \mu $$ ES 的定义为在 VaR 情况下,超过 VaR 部的平均损失,即: $$ ES = -\mu - \dfrac{1}{1-\alpha}\int_{-\infty}^{VaR}xf(x)dx $$ 将 $VaR$ 带入上式,得到: $$ ES = -\mu - \dfrac{1}{1-\alpha}\int_{-\infty}^{-\sigma z_\alpha + \mu}xf(x)dx $$ 对 $-\infty$ 到 $-\sigma z_\alpha + \mu$ 的积可以转化为对 $0$ 到 $z_\alpha$ 的积,即: $$ \int_{-\infty}^{-\sigma z_\alpha + \mu}xf(x)dx = \int_{-\infty}^{z_\alpha}(-\sigma z_\alpha + \mu + \sigma t)f(\sigma t + \mu)\sigma dt $$ 将上式带入 $ES$ 的表达式中,得到: $$ ES = -\mu - \dfrac{1}{1-\alpha}\int_{-\infty}^{z_\alpha}(-\sigma z_\alpha + \mu + \sigma t)f(\sigma t + \mu)\sigma dt $$ 对上式进行展开,可得: $$ ES = -\mu + \dfrac{\sigma}{1-\alpha}\int_{-\infty}^{z_\alpha}tf(\sigma t + \mu)dt - \dfrac{z_\alpha\sigma}{1-\alpha}\int_{-\infty}^{z_\alpha}f(\sigma t + \mu)dt $$ 根据正态分布的性质,可得: $$ \int_{-\infty}^{z_\alpha}f(\sigma t + \mu)dt = \int_{-\infty}^{\frac{z_\alpha - \mu}{\sigma}}\dfrac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}dt = \Phi(\dfrac{z_\alpha - \mu}{\sigma}) $$ 其中,$\Phi(x)$ 为标准正态分布布函数。同理有: $$ \int_{-\infty}^{z_\alpha}tf(\sigma t + \mu)dt = E[\sigma Z + \mu | \sigma Z + \mu \leq VaR] = (\mu + \sigma\phi(\dfrac{z_\alpha - \mu}{\sigma}))/\alpha $$ 其中,$\phi(x)$ 为标准正态分布的概率密度函数。 将上述两个式子带入 $ES$ 的表达式中,可得: $$ ES = -\mu + \dfrac{\sigma}{1-\alpha}(\mu + \sigma\phi(\dfrac{z_\alpha - \mu}{\sigma})) - \dfrac{z_\alpha\sigma}{1-\alpha}\Phi(\dfrac{z_\alpha - \mu}{\sigma}) $$ 因此,在假设损失服从正态分布的情况下,VaR 与 ES 的表达式别为: $$ VaR = -\sigma z_\alpha + \mu $$ $$ ES = -\mu + \dfrac{\sigma}{1-\alpha}(\mu + \sigma\phi(\dfrac{z_\alpha - \mu}{\sigma})) - \dfrac{z_\alpha\sigma}{1-\alpha}\Phi(\dfrac{z_\alpha - \mu}{\sigma}) $$

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值