一些好玩的数论

原创 2016年08月29日 16:43:36

一个有趣的公式

公式

i=1ni3=(i=1ni)2

这个公式很好证明, 又很好用。

证明:

(n+1)4n4=4n3+6n2+4n+1

n3=14[(n+1)4n4]32n2n14

i=1ni3=14[(n+1)41]3216n(n+1)(2n+1)n14(n+1)n2=14(n4+2n3+n2)=(12n(n+1))2=(i=1ni)2

公式背后

我们可以知道fx=xn这是一个积性函数。

(*)而定理告诉我们Fn=m|nfm也是一个积性函数。

dn=m|n1.

由(*)可知dn是一个积性函数。

[d]3也是积性函数。

m|n(dm)3也是积性函数。

同理(m|ndm)2也是积性函数。

我们可以发现m|n(dm)3=(m|ndm)2

一个小学就应该知道的东西

整除7

我们知道怎么快速地判断一个数是否是2、3、5、9的倍数,但是7的话,老师一直没有教我们。

我们把需要判断的数按位写下来,然后从低位到高位顺次乘1, 3, 2, 6, 4, 5判断和是否是7的倍数就好了。

例如:1234485 51+83+42+46+34+25+11=84是7的倍数,所以原数是7的倍数。

证明

11(mod7),103(mod7),1002(mod7)等等。

整除11

现在讲讲如何判断一个数是11的倍数。

把这个数的第奇数位的和减去第偶数位的和,判断是否是11的倍数。

例如:2728 8+722=11 所以原数是11的倍数。

证明:

易得102k+11(mod11),102k1(mod11).

一定是质数

这个没什么用,只是好玩。

fn=n2+n+41,nN,n非41的倍数。这一定是个质数。

判断质数

判断质数我喜欢用Miller-Rabin。但是还有其他的方法。

主要是因为Miller-Rabin是个随机性算法。

Wilson定理

正整数n>1,则n是一个素数当且仅当(n1)!1(modn)

证明:

充分性
p不是素数,那么令p=ab,其中1<a<p1,1<b<p1.
(1)ab

(p1)!=12...a...b...p1

(p1)!0(moda)

(p1)!0(modb)

(p1)!0(modab)

(p1)!0(modp)

(p1)!1(modp)矛盾

(2)a=b

(p1)!=12...a...2a...p1

(p1)!0(moda)

(p1)!0(mod2a)

(p1)!0(mod2a2)

(p1)!0(moda2)

(p1)!0(modp)

(p1)!1(modp)矛盾

因此p只能是素数。

必要性:必要性证明和欧拉定理类似。

Fibonacci GCD’s

fi表示斐波那契数列第i项。
f1=1,f2=1,fi=fi1+fi2,i>3
gcd(fm,fn)=fgcd(m,n)

证明:
(1)gcd(fn,fn1)=1

gcd(fn,fn1)=gcd(fnfn1,fn1)=gcd(fn2,fn1)=gcd(f2,f1)=1

(2)fm+n=fm1fn+fmfn+1
n=1,

fm+1=fm+fm1=fm1fn+fmfn+1

n=2
fm+2=fm1+fm+fm=fmf3+fm1f2=fm1fn+fmfn+1

n>2,n=k+1
n=k,n=k1n=k+1
fm+n=fm+k+fm+k1=fm1fk+fmfk+1+fm1fk1+fmfk=fm1fk+1+fmfk+2=fm1fn+fmfn+1

(3)由(2)可得
如果m|n,那么fm|fn.

n=qm+r

gcd(fm,fn)=gcd(fm,fqm+r)=gcd(fm,fqm+1fr+fqmfr1)=gcd(fm,fqm+1fr)=gcd(fm,fr)

又可知gcd(n,m)=gcd(m,r),得证。

两个组合数公式

(n+mk)=i=0k(ni)(mki)

这个其实可以感性理解。
一间课室有n个人,另一间有m个人,你要选k个人出来。
其实就是枚举第一间可是选i个人然后组合数一下就好了。

i=0n(ni)=2n

一个无聊的证明

(a+b)n=i=0n(ni)aibni

a=b=1
那么

i=0n(ni)=2n

版权声明:本文为博主原创文章,未经博主允许不得转载。

【Linux】一些好玩的shell脚本

更新中……在用户登录时输出欢迎语句和天气情况刚刚开始学习Linux shell脚本,功能很简单,不喜勿喷,用了一个免费的api,可以看这里:链接,需要脚本中加入你要查询天气的城市的id,城市id可以在...
  • guwuchangtian
  • guwuchangtian
  • 2017年07月31日 17:28
  • 629

部分OI常用数论符号集锦

部分数论符号集锦背景学OI,里面有一种叫做数论题的题目,简单的数论题还简单,可是越学就发现越烦了,什么欧拉函数、莫比乌斯反演、某某筛之类的,真的一点都看不懂 那么,怎么办呢,想要学数论先要会其相关符...
  • zhouyuheng2003
  • zhouyuheng2003
  • 2017年09月25日 16:24
  • 388

11个基本数论知识

 1、本原勾股数: 概念:一个三元组(a,b,c),其中a,b,c没有公因数而且满足:a^2+b^2=c^2 首先,这种本原勾股数的个数是无限的,而且构造的条件满足: a=s*t,b=(s...
  • Songjs19931206
  • Songjs19931206
  • 2015年01月20日 12:39
  • 1024

一个好玩的Linux shell脚本

一个好玩的Linux shell脚本,基本死调用cowsay
  • huangjinqiang
  • huangjinqiang
  • 2014年04月28日 19:37
  • 2840

几个好玩的H5案例

一排伞: 绘制圆形:context.arc(x,y,radius,startAngle,endAngle,anticlockwise); html5 function drawTop(ct...
  • qq_36594703
  • qq_36594703
  • 2017年10月10日 17:39
  • 288

(ubuntu系列)一些必备好玩的东西

日常软件安装在前面已经装好ubuntu系统的基础上,需要安装一些必要的东西,一些必备的东西请见:日常软件安装但是作为一个有趣的程序员,肯定除了这些东西之外,还需要一些其他好玩的,比如说听歌必备的网易云...
  • wearge
  • wearge
  • 2017年08月11日 13:14
  • 652

一些有趣的程序注释

在知乎上看见小伙伴分享的富有想象力的程序注释:
  • luckyrass
  • luckyrass
  • 2018年02月04日 15:06
  • 35

编程是比较有意思的事情

这些天一直在实验室干活,忙得不行,所以也没时间来写博客,今天有时间了,先写点对编程的体会。最近逐渐感觉编程是比较有意思的事情,它有意思在于让我们比较有创造力。记得上个学期一来,由于深感教育网上国外网站...
  • buaamstc
  • buaamstc
  • 2006年03月25日 18:16
  • 1149

深度学习有趣的应用

深度学习有趣的应用        深度学习技术可以应用于许多领域,不仅在机器翻译、自然语言处理、目标检测识别、视觉跟踪等方面显示出优异的性能,还有很多有趣的应用。 1、模糊图像清晰化;     ...
  • wangleiwavesharp
  • wangleiwavesharp
  • 2016年11月18日 12:10
  • 2016

Html的一些有意思的标签

:快捷标签,用于给各元素定义快捷键; e.g. 用户名(alt+u) 同时按住alt+u:光标便会显示在用户名框里面;若lable标签定义在在整行的上面,那么点击行光标也会跳到用户名框内;:...
  • Edward_Potato
  • Edward_Potato
  • 2016年09月13日 10:33
  • 359
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:一些好玩的数论
举报原因:
原因补充:

(最多只允许输入30个字)