codeforces 712E

题目大意

n个赌场,你在i赌场时,有pi的概率走到i+1,有1pi的概率走到i1.保证任何时候pipi+1

q次操作,修改一个赌场的p值;或者询问[l,r]表示从第l个赌场走到r的概率,他在走的过程中不会离开区间[l,r].

解题思路

fi表示从i能走到n的概率。
易得fi=fi1(1pi)+fi+1pififi1=pi(fi+1fi1).

gi=fifi1
gi=pi(gi+gi+1)gi+1=gi1pipi

ti=1pipi
gi+1=giti

易得ni=1gi=1f1=g1.

g1+g1t1+g1t1t2++g1t1t1t2t3tn1=1

g1(1+t1+t1t2++t1t1t2t3tn1)=1

只需维护
(1+t1+t1t2++t1t1t2t3tn1)
即可。
这个可以使用线段树简单实现。

参考代码

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define maxn 100005
#define db double
using namespace std;

struct seg{
    db a,b;
}t[maxn * 4],now;

int n,q;

db p[maxn];

void build(int v,int l,int r){
    if (l==r) {
        t[v].a=t[v].b=(1-p[l])/p[l];
        return;
    }
    int mid=(l+r) >> 1;
    build(v << 1,l,mid);
    build(v << 1 | 1,mid+1,r);
    t[v].a=t[v << 1].a*t[v << 1 | 1].a;
    t[v].b=t[v << 1].b+t[v << 1 | 1].b*t[v << 1].a;
}

void change(int v,int l,int r,int x){
    if (l==r) {
        t[v].a=t[v].b=(1-p[l])/p[l];
        return;
    }
    int mid=(l+r) >> 1;
    if (x<=mid) change(v << 1,l,mid,x);
    else change(v << 1 | 1,mid+1,r,x);
    t[v].a=t[v << 1].a*t[v << 1 | 1].a;
    t[v].b=t[v << 1].b+t[v << 1 | 1].b*t[v << 1].a;
}

void query(int v,int l,int r,int x,int y){
    if (l==x && r==y) {
        now.b=now.b+now.a*t[v].b;
        now.a=now.a*t[v].a;
        return;
    }
    int mid=(l+r) >> 1;
    if (y<=mid) query(v << 1,l,mid,x,y);
    else if (x>mid) query(v << 1 | 1,mid+1,r,x,y);
    else query(v << 1,l,mid,x,mid),query(v << 1 | 1,mid+1,r,mid+1,y);
}

int main(){
    scanf("%d%d",&n,&q);
    fo(i,1,n) {
        int x,y;
        scanf("%d%d",&x,&y);
        p[i]=1.0* x / y;
    }
    build(1,1,n);
    while (q--) {
        int Type,x,y,z;
        scanf("%d",&Type);
        if (Type==1) {
            scanf("%d%d%d",&x,&y,&z);
            p[x]=1.0 * y / z;
            change(1,1,n,x);
        }
        else {
            scanf("%d%d",&x,&y);
            db ans;
            now.a=1;
            now.b=0;
            query(1,1,n,x,y);
            if (now.b<=1e15) ans=1/(1+now.b);
            else ans=0;
            printf("%.10lf\n",ans);
        }
    }
    return 0;
}
### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值