codeforces 755E PolandBall and White-Red graph

本文探讨了如何构造一个连通图及其补图,使二者直径的最小值等于给定值k。针对不同的k值(1, 2, 3)提供了构造方法,并证明了当k大于等于4时无解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目大意

给你点数n,以及限制k.
你要构造一个连通图G以及连通补图G
使得min(G,G)=k.

解题思路

k=1

k=1时显然无解。

k4

k>=4时也无解。

证明

我们用d表示G中的距离。
我们用d表示G中的距离。

假设d(u,v)4,证明x,y满足d(x,y)2
由于d(u,v)4,则u,v,x,yG中仅有该4点组成的子图中不连通。
那么就只有两种情况{u,x},{v,y},{u,x,y},{v}.

  1. 第一种情况,x,yG中无边,那么d(x,y)=1
  2. 第二种情况d(x,y)d(x,v)+d(y,v)=2

得证。

k=2

n5时有解。
构造方法就是G是一条由1n的链。
这样G的直径就是2了。

k=3

n4时有解。
先连一条13的链,再将[4,n]3.

参考代码

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define maxn 1005
using namespace std;

int n,k;

int main(){
    scanf("%d%d",&n,&k);
    if (k==1 || k>3) {
        puts("-1");
        return 0;
    }
    if (k==2) {
        if (n<=4) {
            puts("-1");
            return 0;
        }
        printf("%d\n",n-1);
        fo(i,1,n-1) printf("%d %d\n",i,i+1);
    }
    else {
        if (n<=3) {
            puts("-1");
            return 0;
        }
        printf("%d\n",n-1);
        fo(i,2,3) printf("%d %d\n",i-1,i);
        fo(i,4,n) printf("3 %d\n",i);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值