Given an unsorted integer array, find the first missing positive integer.
For example,
Given [1,2,0] return 3,
and [3,4,-1,1] return 2.
For example,
Given [1,2,0] return 3,
and [3,4,-1,1] return 2.
Your algorithm should run in O(n) time and uses constant space.
分析:
桶排的思想
从头到尾遍历数组,在位置 i,希望放置的元素是 i+1, 如果不是,
就把 A[ i ] 和 A[ A[i] -1 ] 的元素,这样就保证了 A[i]-1位置的元素是 A[i],
不断重复上面这个过程,直到 A[ i ] == i+1 或者 A[i] 没有办法再交换,
A[i] 没有办法再交换的情况有:
A[i] <= 0: A[i]-1 是无效下标;
A[i] > n: A[i]-1 是无效下标;
A[i] == A[ A[i]-1]: 交换没有意义。
这样过后,有效的元素 i 一定放在了 A[i-1] 处,第一个 A[i] != i+1 的元素就是第一个缺少的正数了。
因为用的是桶排的思想,所以复杂度是 O(n).
public class Solution {
public int firstMissingPositive(int[] A) {
int n = A.length;
for(int i=0; i<n; i++){
//此处看上去是两层循环,但是在寻找A[i] == i+1 的过程中,
//不断将A[i]放在A[A[i]-1]处,循环到A[i]-1的时候就不用再处理,所以整体是O(n)
while(A[i] != i+1){
if(A[i]<=0 || A[i]>n || A[i]==A[A[i]-1])
break;
else{
//把A[i]放在A[i]-1处
int temp = A[i];
A[i] = A[temp-1];
A[temp-1] = temp;
}
}
}
for(int i=0; i<n; i++){
if(A[i] != i+1)
return i+1;
}
return n+1;
}
}
本文介绍了一种在未排序整数数组中寻找第一个缺失正整数的算法,采用桶排思想实现O(n)时间复杂度及常数空间复杂度。通过遍历数组并调整元素位置确保每个有效元素位于正确位置,从而高效找出缺失值。
2031

被折叠的 条评论
为什么被折叠?



