关闭

MongoDB Schema Design(MongoDB模式设计)

725人阅读 评论(0) 收藏 举报
分类:

Document-Orientation

     在描述中,MongoDB是面向文档的,意味着在这种数据库中主要存储单位是Collection。

 

     一些常见的数据格式例如:JSON、XML、简单的键/值对。

 

     储存在MongoDB中的文档是一种类JSON格式,为了得到更高的效率,使用了一种二进制表现形式且被称为BSON的格式。目标是使数据更紧凑和合理以便于扫描。

 

     客户端序列化数据成BSON传送至数据库中,数据是以BSON格式被存储的。因此,读取数据的时候,数据库只需做很小的解析处理就可以传送出去,更加高效。然后客户端在反序列化BSON格式为当前语言使用的格式。

   JSON

    一段数据:

 

Mongo代码 
  1. { author: 'joe',  
  2.   created : new Date('03-28-2009'),  
  3.   title : 'Yet another blog post',  
  4.   text : 'Here is the text...',  
  5.   tags : [ 'example''joe' ],  
  6.   comments : [ { author: 'jim', comment: 'I disagree' },  
  7.               { author: 'nancy', comment: 'Good post' }  
  8.   ]  
  9. }  
 

     存储的实例:

 

Mongo代码 
  1. > doc = { author : 'joe', created : new Date('03-28-2009'), ... }  
  2. > db.posts.insert(doc);  

 

   Mongo-Friendly Schema

     Mongo可以用于很多方面,第一反应或许是如何用它来编写一个使用关系数据库的应用程序。虽然这项工作非常好,但是也不能展现Mongo的真正力量。Mongo就是被设计和工作在副

 

   Store Example

 

Mongo代码 
  1. item  
  2.    title  
  3.    price  
  4.    sku  
  5. item_features  
  6.    sku  
  7.    feature_name  
  8.    feature_value  
 

    不同的商品有不同的属性,但又不想在一张表中包含所有可能出现的属性。(一般关系数据库中,可能都会另建属性表,跟分类表类似)在Mongo中同样可以创建这个模型,而且更加高效。

 

Mongo代码 
  1. item : {  
  2.          "title" : <title> ,  
  3.          "price" : <price> ,  
  4.          "sku"   : <sku>   ,  
  5.          "features" : {  
  6.             "optical zoom" : <value> ,  
  7.             ...  
  8.          }  
  9. }  

    这样做有几个好处:

    1、一次数据库查询可以得到整条记录。。

    2、一条记录的所有信息都书存储在硬盘的的同一片区域,所以一次检索可以可以得到所有数据。

    3、插入或更新单条属性时:

 

Mongo代码 
  1. db.items.update( { sku : 123 } , { "$set" : { "features.zoom" : "5" } } )  

    4、插入一条新属性不需要在硬盘上移动整条记录,Mongo有一个预留机制,预留出了一部分空间以适应数据对象的增长。也可以预防索引的增长等问题。

 

  Legal Key Names

    键的命名有以下限制:

   1. $不能出作为第一个字符

   2.(.)点不能出现在键名中

  Schema Design(数据库设计)

    Introduction

     在Mongo里,比起设计数据库关系模式,你只需做很少的标准化工作, because there are no server-side "joins"。通常来说,都希望每个顶级对象对应一个Collection。

     每一种分类都建立一个Collection,只需创建一个嵌入式对象。例如在下面的图中,我们有两个Collection,student和coureses。学生Collection中包含一个嵌入的address文档和coursesCollection有联系的score文档。

 

      如果用关系数据库来设计,几乎肯定会把score分离出来单独做一张表,然后加一个外键和student相连。

    Embed vs. Reference

      在Mongo数据库设计中关键的一句话是“比起嵌入到其他Collection中做一个子对象,每个对象值得拥有自己的Collection吗?”。在关系数据库中。每个有兴趣的子项目通常都会分离出来单独设计一张表(除非为了性能的考虑)。而在Mongo中,是不建议使用这种设计的,嵌入式的对象更高效。(这句不是很确定Data is then colocated on disk; client-server turnarounds to the database are eliminated)数据是即时同步到硬盘上的,客户端与服务器不必要在数据库上做周转。所以通常来说问题就是“为什么不使用嵌入式对象呢?”

 

      利用上面的例子,我们来看下为什么引用比较慢

 

Mongo代码 
  1. print( student.address.city );  

 

     address是嵌入式对象,所以这个操作通常是很快速的,如果sdudent被放在内存中,那address也通常在内存中。然而下面这个例子:

 

Mongo代码 
  1. print( student.scores[0].for_course.name );  

 

     如果是第一次访问scores[0]的内容,会先执行下面这句:

 

Mongo代码 
  1. // pseudocode for driver or framework, not user code  
  2.   
  3. student.scores[0].for_course = db.courses.findOne({_id:_course_id_to_find_});  

 

     因此,每一次引用遍历都是一个数据库查询。一般来说,有问题的Collection都是默认的在_id建有索引,查询会稍微快一些。然而即使所有的数据都缓存在内存中,鉴于服务器端/客户端 的应用程序和数据库通信时仍然会有一些延迟。一般来说,期望在查询时缓存命中的境况下有1ms。因此,如果我们迭代1000 student,查找即使在有缓存的情况下仍然是很慢的,超过1m。如果我们只需要查找一条记录,时间应该在1ms左右,这对于一个网页加载来说是可以接受的。(注意:如果数据已经在缓存中,取出1000条数据也许花费时间少于1m,)

 

    一些规则:

   1、顶级对象,一般都有自己的Collection

   2、线性细节对象,一般作为嵌入式的

   3、一个对象和另一个对象是包含关系时通常采用嵌入式设计

   4、多对多的关系通常采取引用设计

   5、只含有几个简单对象的可以单独作为一个Collection,因为整个Collection可以很快的被缓存在应用程序服务器内存中。

   6、在Collection中嵌入式对象比顶级对象更难引用。as you cannot have a DBRef to an embedded object (at least not yet).

   7、It is more difficult to get a system-level view for embedded objects. For example, it would be easier to query the top 100 scores across all students if Scores were not embedded.

   8、如果将要嵌入的数据量很大(很多M),你可以限制单个对象的大小

   9、如果性能存在问题,请使用嵌入式设计

原文 写道
* "First class" objects, that are at top level, typically have their own collection.
* Line item detail objects typically are embedded.
* Objects which follow an object modelling "contains" relationship should generally be embedded.
* Many to many relationships are generally by reference.
* Collections with only a few objects may safely exist as separate collections, as the whole collection is quickly cached in application server memory.
* Embedded objects are harder to reference than "top level" objects in collections, as you cannot have a DBRef to an embedded object (at least not yet).
* It is more difficult to get a system-level view for embedded objects. For example, it would be easier to query the top 100 scores across all students if Scores were not embedded.
* If the amount of data to embed is huge (many megabytes), you may reach the limit on size of a single object.
* If performance is an issue, embed.
 

  Use Cases

   来看几个实例

   1、客户/订单/订单项目

          订单必须作为一个Collection,客户作为一个Collection,订单项目必须作为一个子数组嵌入到订单Collection中

 

   2、博客系统

          posts应该作为一个Collection,auth可以作为一个单独的Collection,或者auth包含的字段很少,比如只有email,address之类的为了更高的性能,也应该设计为嵌入式的对象.

   Index Selection

    数据库设计的第二个方面是索引的选择,一般规则:在mysql中需要的索引,在Mongo中也同样需要.

 

  • _id字段是自动被索引的
  • Fields upon which keys are looked up should be indexed.
  • 排序字段一定建立索引.
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:1273855次
    • 积分:16429
    • 等级:
    • 排名:第627名
    • 原创:372篇
    • 转载:805篇
    • 译文:0篇
    • 评论:95条
    最新评论