rebot的使用

转载 2015年07月10日 06:34:30
rebot简要使用方法介绍
在介绍rebot前,首先说一下RobotFramework(后称RF)的主要输出文件。

当我们执行完一个RF脚本后,RF会输出3种文件。分别是Output、Log和Report。
rebot的使用
Output 是和xunit兼容的一种xml格式的输出文件。可以被各种持续集成工具读取。所有被记录下来的信息其实都在里边。
Log是RF从output文件中提取并格式化的html文件,里边有所有keyword执行的细节情况。
Report也是从output里提取出来的html文件,里边以报表的形式给出了执行情况的统计信息。


Rebot是一个RobotFramework(后称RF)自带的工具。它能够对多个Output 进行整合,并重新输出Log和Report文件。
这就使得我们可以很方便的组合多个或者多次执行的结果到一个Report或者Log文件中。

下面结合一种使用场景,给出Rebot的用法。

使用场景描述:第一个testsuit用pybot执行,第二个testsuit用jybot执行,但是想把结果整合到一起。(这种场景其实也可以用remote技术统一到pybot里去执行)。

第一个testsuit(testsuit的名称叫 suitForJybot.txt)的脚本如下:

*** Test Cases ***
case1
    log   runned by jybot

第二个testsuit(testsuit的名称叫 suitForPybot.txt)的脚本如下:

*** Test Cases ***
case1
    log   runned by pybot


假设两个testsuit在一个目录中,假设为d:\rebot。

我们在命令行中做如下操作。
d:
cd d:\rebot
jybot -o out1.xml suitForJybot.txt

执行完毕后,我们看到目录中有了一个文件叫做out1.xml

继续在命令行中执行。

pybot -o out2.xml suitForPybot.txt
执行完毕后,我们看到目录中有了一个文件叫做out2.xml

下面就要使用rebot了。
执行:

rebot out1.xml out2xml

这样我们看到目录中有了一个文件叫做 output.xml ,log.html 和report.html
查看log.html和report.html,我们发现两次执行的结果已经被合并在了一起。rebot很简单很强大吧?

进阶:

1.其实上述一系列命令可以写成一个windows下的批处理文件,或者linux下的shell文件,能够进一步简化你的工作。
2.pybot/jybot里面的很多参数很有用,例如 -t 可以指定执行哪一个testcase;-i可以根据tag指定要执行的testcase;-e-c这些都能够帮助你灵活的控制执行范围。pybot还支持随机顺序执行等高级操作。
3.pybot中的  -o  -l -r参数分别可以规定output ,log ,report的输出,可以灵活指定输出到那里,很有用。
4.rebot中有同样类似的参数,可以让你随心所欲的生成各种报告。详细可以在命令行模式下使用rebot --help指令查看参数列表。

相关文章推荐

RFS的web自动化验收测试——第11讲 变量的声明、赋值及其使用

引言:什么是RFS——RobotFramework+Selenium2library,本系列主要介绍web自动化验收测试方面。 ( @齐涛-道长 新浪微博)   本来这讲是准备介绍List变量及其用法...

rebot framework

  • 2015-04-28 10:05
  • 5.58MB
  • 下载

Java Rebot类

java的Robot类的几个简单例子 import java.awt.AWTException; import java.awt.Robot; import java.awt.event.K...

GDI+使用演示代码

SVN使用操作培训手册

欢迎使用CSDN-markdown编辑器

欢迎使用Markdown编辑器写博客本Markdown编辑器使用StackEdit修改而来,用它写博客,将会带来全新的体验哦: Markdown和扩展Markdown简洁的语法 代码块高亮 图片链接和...

kettle使用手册

CentOS使用sudo临时提升用户权限

临时提升用户权限有什么用呢? 比如说,我现在有一个程序,需要监听80端口或其他低于1024的端口(普通用户只能监听1024以上的端口),或者需要用到某些特殊权限,但是我又不想使用root来运行,毕竟...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)