关闭

CDOJ_1147 (最短路条数)

标签: acmalgorithmCDOJdijkstra
921人阅读 评论(0) 收藏 举报
分类:

秋实大哥带我飞

Time Limit: 300/100MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others)

Qiushidage Bring Me Fly

然而题目和题面并没有什么关系。

给出n个点,m条带权无向边,问你从1号点到n号点的最短路中有多少种走法?

Input

第一行两个数n,m分别表示点的个数和边的个数。(2n20001m2000

接下来m行,每行3个数u,v,w表示u号点到v号点有一条距离为w的边。(1u,vn0w100000

数据保证1号点能够到达n号点,点和边都可以被走多次。

Output

如果有无穷种走法,输出-1。否则输出走法的方案数mod 1000000009

Sample input and output

Sample Input Sample Output
4 4
1 2 1
1 3 1
2 4 1
3 4 1
2
4 4
1 2 1
1 3 1
2 4 1
3 4 0
-1

Source

2015 UESTC Training for Graph Theory

分析:最短路条数问题。求最短路的条数只需要在dijkstra上面加一个数组sumt[]记录就行,sumt[v] 表示从源点 s 出发到 v 的最短路条数,当 dist[v] > dist[u] + d[u][v] 时,更新sumt[v] 的值就是 sumt[u];当 dist[v] == dist[u] + d[u][v] 时,sumt[v] += sumt[u];判断是否存在无数条最短路,即看是否存在这样的一条边(u, v),边权为 0,并且其中一条最短路经过这条边,也就是 源点 s 到 u 的最短距离 + v 到终点 t 的最短距离 == 最短路长度,因为边权为 0 的话就可以来回无限次地走。所以需要两次最短路分别计算出源点 s 到每个点的最短路、每个点到终点 t 的最短路,然后枚举每条边,即可判断是否存在无数条最短路。

题目链接:http://acm.uestc.edu.cn/#/problem/show/1147

代码清单:
/*******************************************************************************
 *** problem ID  : UESTC_1147.cpp
 *** create time : Wed Nov 18 14:22:41 2015
 *** author name : nndxy
 *** author blog : http://blog.csdn.net/jhgkjhg_ugtdk77
 *** author motto: never loose enthusiasm for life, life is to keep on fighting!
 *******************************************************************************/

#include <map>
#include <set>
#include <cmath>
#include <queue>
#include <stack>
#include <ctime>
#include <vector>
#include <cctype>
#include <string>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <bits/stdc++.h>

using namespace std;

#define exit() return 0

typedef long long ll;
typedef unsigned int uint;
typedef unsigned long long ull;

const int maxn = 2000 + 5;
const int maxm = 2000 + 5;
const int INF = 0x7f7f7f7f;
const ll mod = 1e9 + 9;

struct P{
	int to, dis;
	P() {}
	P(int _to, int _dis) : to(_to), dis(_dis) {}
	friend bool operator<(P a, P b) { return a.dis > b.dis; }
};

struct Edge{
	int u, v, dis, next;
};

int n, m;
int a, b, c, num;
int head[maxn];
Edge edge[maxm * 2];
ll sum1[maxn], sum2[maxn];
int dist1[maxn], dist2[maxn];

void addEdge(int u, int v, int dis){
	edge[num].u = u;
	edge[num].v = v;
	edge[num].dis = dis;
	edge[num].next = head[u];
	head[u] = num++;
}

void input(){
	scanf("%d%d", &n, &m);
	num = 0;
	memset(head, -1, sizeof(head));
	for(int i = 0; i < m; i++){
		scanf("%d%d%d", &a, &b, &c);
		addEdge(a, b, c);
		addEdge(b, a, c);
	}
}

void dijkstra(int dist[], ll sumt[], int s){
	fill(dist + 1, dist + 1 + n, INF);
	fill(sumt + 1, sumt + 1 + n, 0);
	priority_queue <P> q;
	while(!q.empty()) q.pop();

	dist[s] = 0; sumt[s] = 1;
	q.push(P(s, 0));

	while(!q.empty()){
		P p = q.top(); q.pop();
		int u = p.to;
		if(p.dis > dist[u]) continue;
		for(int i = head[u]; i != -1; i = edge[i].next){
			int v = edge[i].v;
			if(dist[v] > dist[u] + edge[i].dis){
				sumt[v] = sumt[u] % mod;
				dist[v] = dist[u] + edge[i].dis;
				q.push(P(v, dist[v])); 
			}
			else if(dist[v] == dist[u] + edge[i].dis){
				sumt[v] = (sumt[v] + sumt[u]) % mod;
			}
		}
	}
}


bool check(){
	for(int i = 0; i < num; i++){
		int u = edge[i].u;
		int v = edge[i].v;
		if(edge[i].dis == 0 && dist1[u] + dist2[v] == dist1[n]){
			return true;
		}
	}
	return false;
}


void solve(){
	dijkstra(dist1, sum1, 1);
	dijkstra(dist2, sum2, n);
	if(check()) printf("-1\n");
	else printf("%lld\n", sum1[n] % mod);
}

int main(){
	input();
	solve();
	exit();
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:119607次
    • 积分:2800
    • 等级:
    • 排名:第13463名
    • 原创:163篇
    • 转载:4篇
    • 译文:0篇
    • 评论:54条
    最新评论