基于梯度下降算法求解线性回归

原创 2017年06月19日 18:02:17

线性回归(Linear Regression)

梯度下降算法在机器学习方法分类中属于监督学习。利用它可以求解线性回归问题,计算一组二维数据之间的线性关系,假设有一组数据如下下图所示
这里写图片描述
其中X轴方向表示房屋面积、Y轴表示房屋价格。我们希望根据上述的数据点,拟合出一条直线,能跟对任意给定的房屋面积实现价格预言,这样求解得到直线方程过程就叫线性回归,得到的直线为回归直线,数学公式表示如下:
这里写图片描述

二:梯度下降 (Gradient Descent)

这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述

三:代码实现

数据读入

public List<DataItem> getData(String fileName) {
    List<DataItem> items = new ArrayList<DataItem>();
    File f = new File(fileName);
    try {
        if (f.exists()) {
            BufferedReader br = new BufferedReader(new FileReader(f));
            String line = null;
            while((line = br.readLine()) != null) {
                String[] data = line.split(",");
                if(data != null && data.length == 2) {
                    DataItem item = new DataItem();
                    item.x = Integer.parseInt(data[0]);
                    item.y = Integer.parseInt(data[1]);
                    items.add(item);
                }
            }
            br.close();
        }
    } catch (IOException ioe) {
        System.err.println(ioe);
    }
    return items;
}

归一化处理

public void normalization(List<DataItem> items) {
    float min = 100000;
    float max = 0;
    for(DataItem item : items) {
        min = Math.min(min, item.x);
        max = Math.max(max, item.x);
    }
    float delta = max - min;
    for(DataItem item : items) {
        item.x = (item.x - min) / delta;
    }
}

梯度下降

public float[] gradientDescent(List<DataItem> items) {
    int repetion = 1500;
    float learningRate = 0.1f;
    float[] theta = new float[2];
    Arrays.fill(theta, 0);
    float[] hmatrix = new float[items.size()];
    Arrays.fill(hmatrix, 0);
    int k=0;
    float s1 = 1.0f / items.size();
    float sum1=0, sum2=0;
    for(int i=0; i<repetion; i++) {
        for(k=0; k<items.size(); k++ ) {
            hmatrix[k] = ((theta[0] + theta[1]*items.get(k).x) - items.get(k).y);
        }

        for(k=0; k<items.size(); k++ ) {
            sum1 += hmatrix[k];
            sum2 += hmatrix[k]*items.get(k).x;
        }

        sum1 = learningRate*s1*sum1;
        sum2 = learningRate*s1*sum2;

        // 更新 参数theta
        theta[0] = theta[0] - sum1;
        theta[1] = theta[1] - sum2;
    }

    return theta;
}

价格预言

public float predict(float input, float[] theta) {
    float result = theta[0] + theta[1]*input;
    return result;
}

线性回归图

public void drawPlot(List<DataItem> series1, List<DataItem> series2, float[] theta) {
    int w = 500;
    int h = 500;
    BufferedImage plot = new BufferedImage(w, h, BufferedImage.TYPE_INT_ARGB);
    Graphics2D g2d = plot.createGraphics();
    g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);
    g2d.setPaint(Color.WHITE);
    g2d.fillRect(0, 0, w, h);
    g2d.setPaint(Color.BLACK);
    int margin = 50;
    g2d.drawLine(margin, 0, margin, h);
    g2d.drawLine(0, h-margin, w, h-margin);
    float minx=Float.MAX_VALUE, maxx=Float.MIN_VALUE;
    float miny=Float.MAX_VALUE, maxy=Float.MIN_VALUE;
    for(DataItem item : series1) {
        minx = Math.min(item.x, minx);
        maxx = Math.max(maxx, item.x);
        miny = Math.min(item.y, miny);
        maxy = Math.max(item.y, maxy);
    }
    for(DataItem item : series2) {
        minx = Math.min(item.x, minx);
        maxx = Math.max(maxx, item.x);
        miny = Math.min(item.y, miny);
        maxy = Math.max(item.y, maxy);
    }
    // draw X, Y Title and Aixes
    g2d.setPaint(Color.BLACK);
    g2d.drawString("价格(万)", 0, h/2);
    g2d.drawString("面积(平方米)", w/2, h-20);

    // draw labels and legend
    g2d.setPaint(Color.BLUE);
    float xdelta = maxx - minx;
    float ydelta = maxy - miny;
    float xstep = xdelta / 10.0f;
    float ystep = ydelta / 10.0f;
    int dx = (w - 2*margin) / 11;
    int dy = (h - 2*margin) / 11;

    // draw labels
    for(int i=1; i<11; i++) {
        g2d.drawLine(margin+i*dx, h-margin, margin+i*dx, h-margin-10);
        g2d.drawLine(margin, h-margin-dy*i, margin+10, h-margin-dy*i);
        int xv = (int)(minx + (i-1)*xstep);
        float yv = (int)((miny + (i-1)*ystep)/10000.0f);
        g2d.drawString(""+xv, margin+i*dx, h-margin+15);
        g2d.drawString(""+yv, margin-25, h-margin-dy*i);
    }

    // draw point
    g2d.setPaint(Color.BLUE);
    for(DataItem item : series1) {
        float xs = (item.x - minx) / xstep + 1;
        float ys = (item.y - miny) / ystep + 1;
        g2d.fillOval((int)(xs*dx+margin-3), (int)(h-margin-ys*dy-3), 7,7);
    }
    g2d.fillRect(100, 20, 20, 10);
    g2d.drawString("训练数据", 130, 30);

    // draw regression line
    g2d.setPaint(Color.RED);
    for(int i=0; i<series2.size()-1; i++) {
        float x1 = (series2.get(i).x - minx) / xstep + 1;
        float y1 = (series2.get(i).y - miny) / ystep + 1;
        float x2 = (series2.get(i+1).x - minx) / xstep + 1;
        float y2 = (series2.get(i+1).y - miny) / ystep + 1;
        g2d.drawLine((int)(x1*dx+margin-3), (int)(h-margin-y1*dy-3), (int)(x2*dx+margin-3), (int)(h-margin-y2*dy-3));
    }
    g2d.fillRect(100, 50, 20, 10);
    g2d.drawString("线性回归", 130, 60);


    g2d.dispose();
    saveImage(plot);
}

四:总结

本文通过最简单的示例,演示了利用梯度下降算法实现线性回归分析,使用更新收敛的算法常被称为LMS(Least Mean Square)又叫Widrow-Hoff学习规则,此外梯度下降算法还可以进一步区分为增量梯度下降算法与批量梯度下降算法,这两种梯度下降方法在基于神经网络的机器学习中经常会被提及,对此感兴趣的可以自己进一步探索与研究。

只分享干货,不止于代码

版权声明:本文为博主原创文章,未经博主允许不得转载。

梯度下降法解多元线性回归

今天试验了梯度下降法求多元线性回归,一般给出拟合数据,根据误差平方最小可以将系数表示为输入数据的函数。这里先选择了一组初始系数,设定步长,迭代最大500次,结果比较稳定。 原始数据X: 9.200...

机器学习算法入门之(一)梯度下降法实现线性回归

1. 背景 文章的背景取自An Introduction to Gradient Descent and Linear Regression,本文想在该文章的基础上,完整地描述线性回归算法。部分数据...

线性回归、梯度下降算法与 tensorflow

举个栗子考虑一个二手房交易记录数据集. 已知房屋面积,卧室数量和交易价格: 根据这个数据集,要求我们估算当前某个给定房屋价格. 我们应该怎么做?线性回归回归就是根据已知数据来预测另一个数值型数据...

特征值 特征向量 广义特征值 matlab

d=eig(A)www.iLoveMatlab.cn返回矩阵A特征值的一个向量d。 d=eig(A,B)www.iLoveMatlab.cn 如果A和B是方阵的,返回包含广义特征的向量。 注意:如果S...

Jacobian矩阵和Hessian矩阵

Jacobian矩阵和Hessian矩阵 1. Jacobian 在向量分析中, 雅可比矩阵是一阶偏导数以一定方式排列成的矩阵, 其行列式称为雅可比行列式. 还有, 在代数几何中, 代数曲...

一元线性回归与梯度下降算法

NG机器学习公开课学习笔记,一元线性回归和梯度下降算法,以及R语言实现。...
  • JiZhG
  • JiZhG
  • 2015年08月04日 20:40
  • 811

Gradient Descent for Linear Regression,线性回归的梯度下降算法

针对线性回归模型,我们假设

机器学习_线性回归,梯度下降算法与正规方程

个人对这方面的理解,文字纯手打,图片来自于coursera的课件 1.线性回归的定义:给出若干的训练集(训练集中x(j)ix_i^{(j)}表示样本j中第i个项),然后拟合为一条直线,使得cost最...

线性回归与梯度下降算法(1)

参考:http://blog.csdn.net/xiazdong/article/details/7950084

斯坦福机器学习: 网易公开课系列笔记(二)——线性回归、梯度下降算法和最小二乘公式

课程一共分为三个板块,分别讲述了监督学习、非监督学习、增强学习的一些模型和相关算法。那么什么是监督学习?非监督学习?强化学习呢?      我们可以这样理解,假如我们对某个地区的鸟类进行分类,为了简便...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:基于梯度下降算法求解线性回归
举报原因:
原因补充:

(最多只允许输入30个字)