Given an array of integers, every element appears three times except for one. Find that single one.
Note:
Your algorithm should have a linear runtime complexity. Could you implement it without using extra memory?
之前做过了数组中其他数出现两次,仅有一个出现一次的,直接用所有元素异或就行了(只要是偶数次,都可以用这个方法),本题变为其他元素出现3次,而且时间复杂度要求线性,空间为常数。
解法一:
int 数据共有32位,可以用32变量存储 这 N 个元素中各个二进制位上 1 出现的次数,最后 在进行 模三 操作,如果为1,那说明这一位是要找元素二进制表示中为 1 的那一位。代码如下:
class Solution {
public:
int singleNumber(int A[], int n) {
int bitnum[32]={0};
int res=0;
for(int i=0; i<32; i++){
for(int j=0; j<n; j++){
bitnum[i]+=(A[j]>>i)&1;
}
res|=(bitnum[i]%3)<<i;
}
return res;
}
};
时间:O(32*N),这是一个通用的解法,如果把出现3次改为 k 次,那么只需模k就行了。
解法二:
这是一个更快一些的解法,利用三个变量分别保存各个二进制位上 1 出现一次、两次、三次的分布情况,最后只需返回变量一就行了。代码如下:
class Solution {
public:
int singleNumber(int A[], int n) {
int one=0, two=0, three=0;
for(int i=0; i<n; i++){
two |= one&A[i];
one^=A[i];
//cout<<one<<endl;
three=one&two;
one&= ~three;
two&= ~three;
}
return one;
}
};
解释:每次循环先计算 twos,即出现两次的 1 的分布,然后计算出现一次的 1 的分布,接着 二者进行与操作得到出现三次的 1 的分布情况,然后对 threes 取反,再与 ones、twos进行与操作,这样的目的是将出现了三次的位置清零。
这个方法虽然更快、更省空间了,但是并不通用。