定义:按照某种遍历方式对二叉树进行遍历,可以把二叉树中所有结点排序为一个线性序列。在该序列中,除第一个结点外每个结点有且仅有一个直接前驱结点;除最后一个结点外每一个结点有且仅有一个直接后继结点。这些指向直接前驱结点和指向直接后续结点的指针被称为线索(Thread),加了线索的二叉树称为线索二叉树。
n个结点的二叉链表中含有n+1个空指针域。利用二叉链表中的空指针域,存放指向结点在某种遍历次序下的前趋和后继结点的指针(这种附加的指针称为"线索")。这种加上了线索的二叉链表称为线索链表,相应的二叉树称为线索二叉树(Threaded BinaryTree)。根据线索性质的不同,线索二叉树可分为前序线索二叉树、中序线索二叉树和后序线索二叉树三种。
下面要对这颗二叉树进行线索化:
实现代码:threadTree.c
#include <stdio.h>
#include <stdlib.h>
typedef char ElemType; //数据类型
typedef enum {Link,Thread} childTag; //Link表示结点,Thread表示线索
typedef struct bitNode
{
ElemType data;
struct bitNode *lchild,*rchild;
int ltag,rtag;
} bitNode ,*bitTree;
void create_tree(bitTree *T,char **arr); //创建二叉树
void pre_order_traverse(bitTree T,int level); //前序遍历二叉树
void in_order_threading(bitTree T); //中序遍历线索化
void in_thread(bitTree *P,bitTree T); //新加入一个头结点,让二叉树成一个封闭环
void in_order_traverse(bitTree T); //中序遍历二叉树(带有头结点)
void visit(bitTree T); //访问结点信息
bitTree pre; //表示上次刚刚访问的结点
int main()
{
bitTree P,T;
int level =1; //表示该结点的深度
char *arr="ab d ce "; //构造二叉树所需结点(按前序遍历方式输入)
create_tree(&T,&arr); //构造二叉树
printf("pre-order-traverse\n");
pre_order_traverse(T,level); //前序遍历输出二叉树
printf("in-order-traverse\n");
in_thread(&P,T); //二叉树线索化
in_order_traverse(P); //输出线索化后的二叉树
return 0;
}
/*
创建二叉树,其输入必须按照前序遍历的次序。
T:二叉树根节点
arr:按照前序遍历次序排列的各节点的值。无孩子结点时用空格代替
*/
void create_tree(bitTree *T,char **arr)
{
char c;
sscanf(*arr,"%c",&c); //读入一个结点值
(*arr)++;
if(' '==c) //如果是空格,表示空结点
{
*T=NULL;
}
else
{
*T=(bitTree)malloc(sizeof(bitNode)); //构造新结点
(*T)->data=c;
(*T)->ltag=Link;
(*T)->rtag=Link;
create_tree(&(*T)->lchild,arr);//构造新结点的左孩子
create_tree(&(*T)->rchild,arr);//构造新结点的右孩子
}
}
/*
前序遍历访问二叉树
*/
void pre_order_traverse(bitTree T,int level)
{
if(T)
{
visit(T);
pre_order_traverse(T->lchild,level+1);
pre_order_traverse(T->rchild,level+1);
}
}
/*
中序遍历二叉树,对其进行线索化
*/
void in_order_threading(bitTree T)
{
if(T)
{
in_order_threading(T->lchild); //左孩子线索化
if(!T->lchild) //如果左孩子为空,则将其指向直接前驱
{
T->lchild=pre;
T->ltag=Thread;
}
if(!pre->rchild) //如果上一个结点的右孩子为空,则将其指向直接后继。(注意:只有访问到下一个结点时,才会知道本结点的后继是谁)
{
pre->rchild=T;
pre->rtag=Thread;
}
pre=T;
in_order_threading(T->rchild); //右孩子线索化
}
}
/*
加入一个头结点,使二叉线索树成一个封闭环
P:带有头结点的二叉树。头结点的左孩子指向二叉树T;右孩子指向T树中的最后一个叶子结点
T:不带有头结点的二叉树。
*/
void in_thread(bitTree *P,bitTree T)
{
(*P)=(bitTree)malloc(sizeof(bitNode)); //构造新加入的头结点
(*P)->ltag=Link;
(*P)->rtag=Thread;
(*P)->rchild=*P;
if(!T) //如果二叉树为空,则P的孩子指向自己。
{
(*P)->lchild=*P;
}
else
{
(*P)->lchild=T;
pre=*P;
in_order_threading(T); //对二叉树进行线索化
(*P)->rchild=pre; //将头结点右孩子指向最后一个叶子结点
pre->rtag=Thread; //将最后一个叶子结点的右孩子指向头结点。这样,环就形成了。
pre->rchild=*P;
}
}
/*
非递归方式:中序遍历二叉树(树必须带有头结点,且已经线索化)
P:带有头结点的二叉树
*/
void in_order_traverse(bitTree P)
{
bitTree T;
T=P->lchild;
while(T!=P) //判断是否空树
{
while(T->ltag==Link) //从左孩子开始,直到叶子结点
{
T=T->lchild;
}
visit(T);
while(T->rtag==Thread && T->rchild!=P) //根据线索,访问后继结点。并且后继结点不是指向头结点的
{
T=T->rchild;
visit(T);
}
T=T->rchild;
}
}
/*
访问结点信息
*/
void visit(bitTree T)
{
printf("%d-%c-%d\n",T->ltag,T->data,T->rtag);
}
测试结果: