线索二叉树

定义:按照某种遍历方式对二叉树进行遍历,可以把二叉树中所有结点排序为一个线性序列。在该序列中,除第一个结点外每个结点有且仅有一个直接前驱结点;除最后一个结点外每一个结点有且仅有一个直接后继结点。这些指向直接前驱结点和指向直接后续结点的指针被称为线索(Thread),加了线索的二叉树称为线索二叉树。

n个结点的二叉链表中含有n+1个空指针域。利用二叉链表中的空指针域,存放指向结点在某种遍历次序下的前趋和后继结点的指针(这种附加的指针称为"线索")。这种加上了线索的二叉链表称为线索链表,相应的二叉树称为线索二叉树(Threaded BinaryTree)。根据线索性质的不同,线索二叉树可分为前序线索二叉树、中序线索二叉树和后序线索二叉树三种。



下面要对这颗二叉树进行线索化:


实现代码:threadTree.c

#include <stdio.h>
#include <stdlib.h>

typedef char ElemType; //数据类型
typedef enum {Link,Thread} childTag; //Link表示结点,Thread表示线索
typedef struct bitNode
{
  ElemType data;
  struct bitNode *lchild,*rchild;
  int ltag,rtag;
} bitNode ,*bitTree;

void create_tree(bitTree *T,char **arr); //创建二叉树
void pre_order_traverse(bitTree T,int level); //前序遍历二叉树
void in_order_threading(bitTree T); //中序遍历线索化
void in_thread(bitTree *P,bitTree T); //新加入一个头结点,让二叉树成一个封闭环
void in_order_traverse(bitTree T); //中序遍历二叉树(带有头结点)
void visit(bitTree T); //访问结点信息

bitTree pre; //表示上次刚刚访问的结点

int main()
{
  bitTree P,T;
  int level =1; //表示该结点的深度
  char *arr="ab d  ce   "; //构造二叉树所需结点(按前序遍历方式输入)
  create_tree(&T,&arr); //构造二叉树
  printf("pre-order-traverse\n");
  pre_order_traverse(T,level); //前序遍历输出二叉树
  printf("in-order-traverse\n");
  in_thread(&P,T); //二叉树线索化
  in_order_traverse(P); //输出线索化后的二叉树
  return 0;
}

/*
创建二叉树,其输入必须按照前序遍历的次序。
T:二叉树根节点
arr:按照前序遍历次序排列的各节点的值。无孩子结点时用空格代替
*/
void create_tree(bitTree *T,char **arr)
{
  char c;
  sscanf(*arr,"%c",&c); //读入一个结点值
  (*arr)++;
  if(' '==c) //如果是空格,表示空结点
    {
      *T=NULL;
    }
  else 
    {
      *T=(bitTree)malloc(sizeof(bitNode)); //构造新结点
      (*T)->data=c;
      (*T)->ltag=Link;
      (*T)->rtag=Link;
      create_tree(&(*T)->lchild,arr);//构造新结点的左孩子
      create_tree(&(*T)->rchild,arr);//构造新结点的右孩子
    }
}

/*
前序遍历访问二叉树
*/
void pre_order_traverse(bitTree T,int level)
{
  if(T)
    {
      visit(T);
      pre_order_traverse(T->lchild,level+1);
      pre_order_traverse(T->rchild,level+1);
    }
}

/*
中序遍历二叉树,对其进行线索化
*/
void in_order_threading(bitTree T)
{
  if(T)
    {
      in_order_threading(T->lchild); //左孩子线索化
      if(!T->lchild) //如果左孩子为空,则将其指向直接前驱
    {
      T->lchild=pre;
      T->ltag=Thread;
    }
      if(!pre->rchild) //如果上一个结点的右孩子为空,则将其指向直接后继。(注意:只有访问到下一个结点时,才会知道本结点的后继是谁)
    {
      pre->rchild=T;
      pre->rtag=Thread;
    }
      pre=T;
      in_order_threading(T->rchild); //右孩子线索化
    }
}

/*
加入一个头结点,使二叉线索树成一个封闭环
P:带有头结点的二叉树。头结点的左孩子指向二叉树T;右孩子指向T树中的最后一个叶子结点
T:不带有头结点的二叉树。
*/
void in_thread(bitTree *P,bitTree T)
{
  (*P)=(bitTree)malloc(sizeof(bitNode)); //构造新加入的头结点
  (*P)->ltag=Link;
  (*P)->rtag=Thread;
  (*P)->rchild=*P;
  if(!T) //如果二叉树为空,则P的孩子指向自己。
    {
      (*P)->lchild=*P;
    }
  else
    {
      (*P)->lchild=T;
      pre=*P;
      in_order_threading(T); //对二叉树进行线索化
      (*P)->rchild=pre; //将头结点右孩子指向最后一个叶子结点
      pre->rtag=Thread; //将最后一个叶子结点的右孩子指向头结点。这样,环就形成了。
      pre->rchild=*P;
    }
}

/*
非递归方式:中序遍历二叉树(树必须带有头结点,且已经线索化)
P:带有头结点的二叉树
*/
void in_order_traverse(bitTree P)
{
  bitTree T;
  T=P->lchild;
  while(T!=P) //判断是否空树
    {
      while(T->ltag==Link) //从左孩子开始,直到叶子结点
		{
		  T=T->lchild;
		}
      visit(T);
      while(T->rtag==Thread && T->rchild!=P) //根据线索,访问后继结点。并且后继结点不是指向头结点的
		{
		  T=T->rchild;
		  visit(T);
		}
      T=T->rchild;
    }
}

/*
访问结点信息
*/
void visit(bitTree T)
{
    printf("%d-%c-%d\n",T->ltag,T->data,T->rtag);
}
测试结果:



评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值