关闭
当前搜索:

[置顶] Python 命令汇总

python 库windows安装兵种:python程序员。 等级:二级。 攻击:较高。 防御:普通。 价格:低。 天赋:胶水,我方有c程序员时,速度可达到c程序员的80%。 天赋:成熟,难以升级到三级,即使成功也没什么好处...
阅读(734) 评论(0)

[置顶] Linux的常用经典命令(持续更新)

找工作笔试面试那些事儿(16)—linux相关知识点(1) 找工作笔试面试那些事儿(17)—linux测试题 vim编辑器操作命令大全-绝对全 - CSDN博客 Linux进阶资源 Linux工具快速教程 快乐的 Linux 命令行 Linux Tutorial UNIX Tutorial for Beginners GNU/Linux 初學之旅 Linux System...
阅读(1756) 评论(0)

[置顶] 多GPU运行Deep Learning 和 并行Deep Learning(待续)

本文论述了 Deep learning运行所需的硬件配置,多GPU运行Deep Learning,设置Deep Learning的数据并行和 模型并行。详情请参考下文 http://timdettmers.com/category/hardware/...
阅读(597) 评论(0)

[置顶] 防止过拟合以及解决过拟合

本文转载:http://blog.sina.com.cn/s/blog_53c47a2f0102vjyf.html                     过拟合:为了得到一致假设而使假设变得过度复杂称为过拟合。“一个过拟合的模型试图连误差(噪音)都去解释(而实际上噪音又是不需要解释的),导致泛化能力比较差,显然就过犹不及了。” 这句话很好的诠释了过拟合产生的原因,但我认为这只是一部分...
阅读(699) 评论(0)

[置顶] Recall(召回率) Precision(准确率) F-Measure E值 sensitivity(灵敏性) specificity(特异性)漏诊率 误诊率 ROC AUC

Berkeley Computer Vision page Performance Evaluation 机器学习之分类性能度量指标 : ROC曲线、AUC值、正确率、召回率 True Positives, TP:预测为正样本,实际也为正样本的特征数 False Positives,FP:预测为正样本,实际为负样本的特征数 True Negatives,TN:预测为负样本,实际也为...
阅读(1702) 评论(0)

[置顶] Sublime优美设置(待续)

快捷键熟悉练习请查看 http://www.cnblogs.com/figure9/p/sublime-text-complete-guide.html1.基础用户设置工具栏 – Preferences – Settings – User{ “theme”: “Soda Dark.sublime-theme”, “tab_size”: 4, “font_size”: 10....
阅读(3511) 评论(0)

[置顶] 关于机器学习你必须要了解的事情

原文:Pedro Domingos, A Few Useful Things to Know about Machine Learning    1. 泛化效果是机器学习的唯一目标 训练集上的效果无关紧要,泛化效果是机器学习的唯一目标。稍极端的例子,如果训练集准确率为0%,但随机取的新数据集上准确率为60%。也好过训练集80%,新数据40%的结果。这点不仅对机器学习重要,即使是人...
阅读(1037) 评论(0)

Python xrange与range的区别

xrange 与 rangexrange 用法与 range 完全相同,所不同的是生成的不是一个list对象,而是一个生成器。要生成很大的数字序列的时候,用xrange会比range性能优很多,因为不需要一上来就开辟一块很大的内存空间。 xrange 和 range 这两个基本上都是在循环的时候用。for i in range(0, 100): print ifor i in xrange...
阅读(114) 评论(0)

画图网页http://weavesilk.com/

画图网页http://weavesilk.com/...
阅读(205) 评论(0)

word_cloud

word_cloudword_cloudwordcloud_server...
阅读(79) 评论(0)

李宏毅机器学习课程-Structured Learning

Simple structured learning framework for python pystruct-github Slides for explaining structured prediction and PyStruct -github 一、Structured Learning-Unifed Framework 之前的input and output...
阅读(192) 评论(0)

李宏毅机器学习课程-Transfer Learning

深度学习 -> 强化学习 ->迁移学习(杨强教授报告) 李宏毅机器学习课程-Transfer Learning 迁移学习-吴恩达 freeze 待处理的 理解深层神经网络中的迁移学习及TensorFlow实现 Transfer Learning模式 Similar domain, different tasks Different domains, same...
阅读(472) 评论(2)

12bit灰度图像映射到8bit显示及python 实现

图像显示和打印面临的一个问题是:图像的亮度和对比度能否充分突出关键部分。这里所指的“关键部分”在 CT 里的例子有软组织、骨头、脑组织、肺、腹部等等。 技术问题1、显示器往往只有 8-bit, 而数据有 12- 至 16-bits。 2、如果将数据的 min 和 max 间 (dynamic range) 的之间转换到 8-bit...
阅读(392) 评论(0)

应用深度学习(台大陈蕴侬&李宏毅) Part1

History of Deep LearningBig Data & GPU端到端Universality TheoremCore Factors for Applied Deep Learning参考文献http://v.qq.com/vplus/578e2d6f5e1fadc1/foldervideos/8n1000201qzzkx5Deep Learning ◦Goodfellow, Be...
阅读(385) 评论(0)

关于Matlab编程的思考(待续)

Matlab编程的规范化思考1.并行化2.释放内存3.需要调参的变量太多,可考虑将变量都放到一个结构体里面。4.find(y),就是要找到y中那些非零项的指引5.代码运行出现问题的时候,在命令行输入why就可以得到答案6.输入bench可以给电脑跑分。7.home 将光标移至命令窗口的左上角8.查看matlab命令历史记录可找history.m, prefdir cd prefdir %%%%%%%...
阅读(251) 评论(0)

python中的深拷贝与浅拷贝

浅拷贝的时候,修改原来的对象,深拷贝的对象不会发生改变。对象的赋值对象的赋值实际上是对象之间的引用:当创建一个对象,然后将这个对象赋值给另外一个变量的时候,python并没有拷贝这个对象,而只是拷贝了这个对象的引用。aList = ["kel","abc",123] print(aList, id(aList)) bList = aListbList.append("add")print(aList...
阅读(275) 评论(0)

Python程序设计—车万翔

程序设计入门—Python对象和类型五种基本对象类型字符串 (string),简记为 str 使用 ’ ’ 或 ” ” 括起来的一系列字符 整数(integer),简记为 int 十进制:21,八进制:025,十六进制:0x15 浮点数(float) 1.48,21.0,21.,.21,2.1E2 布尔数(boolean),简记为 bool True,False 复数(co...
阅读(457) 评论(0)

Tensor数据相关的运算、函数讲解及与numpy区别

Tensortensorflow 中使用它来表示数据。可以看做多维数组或者list。 标量是张量,向量是张量,矩阵是张量,矩阵的矩阵是张量。常用几种定义方法1. variable变量,一般是可以被更更新或更改的数值,即在流图运行过程中可以被不断动态调整的值。我们训练一个模型的时候,会用到Tensorflow中的变量(Variables),我们需要它来保持和更新参数值,和张量一样,变量也保存在内存缓...
阅读(607) 评论(0)

李宏毅机器学习课程12~~~半监督学习

Semi-supervised LearningThe distribution of the unlabeled data tell us something. Usually with some assumptions.Supervised Generative Model对比学习见 李宏毅机器学习课程4~~~分类:概率生成模型EM算法思路来最大化似然函数。Self-training Self...
阅读(399) 评论(0)

李宏毅机器学习课程11~~~为何要"深"?

为何要“深”? pluskid的博客 Deep Learning and Shallow LearningBengio Y. Learning deep architectures for AI. Foundations and trends® in Machine Learning, 2009Deeper is Better?模型有更多的参数会有更好的结果,这是毋庸置疑的。深瘦的模型会比浅胖的模...
阅读(261) 评论(0)

ubuntu16.04 制作gif

byzanz安装sudo apt-get install byzanz byzanz-record #录像 byzanz-playback #回放下载完成后打开命令行输入byzanz-record –help其中我们重点关注几个参数 * -d 动画录制的时间,默认录制10秒 * -e 动画开始延迟 * -x 录制区域的起始X坐标 * -y 录制区域的起始Y坐标 * -w 录制区...
阅读(333) 评论(0)

github访问太慢解决方案

github 域名列表先建立一个域名列表haha.txt,下面列表中的gist.github.com是代码片功能github.com assets-cdn.github.com avatars0.githubusercontent.com avatars1.githubusercontent.com documentcloud.github.com gist.github.com help.gith...
阅读(800) 评论(0)

Python中的除法保留两位小数

在C/C++语言对于整形数执行除法会进行地板除(舍去小数部分)。例如 int a=15/10; a的结果为1。同样的在Java中也是如此,所以两个int型的数据相除需要返回一个浮点型数据的时候就需要强制类型转换,例如 float a = (float)b/c ,其中b、c都是int型数据。Python中分为3种除法:传统除法、精确除法、地板除。传统除法如果是整数除法则执行地板除,如果是浮点数除法则执...
阅读(4367) 评论(0)

Python的GUI框架PySide

PySide学习笔记PySide安装Python自带了GUI模块Tkinter,只是界面风格有些老旧。 Python的Qt有PyQt和PySide吧。PyQt 是商业及 GPL 的版权, 而 PySide 是 LGPL。大意也就是PyQt开发商业软件是要购买授权的,而PySide则不需要。二者代码基本一致,修改下import 基本剩余的代码皆可通用。所以毫不犹豫的选择了PySide。QtCore是...
阅读(308) 评论(0)

Tensorflow中padding的两种类型SAME和VALID

边界补充问题 原始图片尺寸为7*7,卷积核的大小为3*3,当卷积核沿着图片滑动后只能滑动出一个5*5的图片出来,这就造成了卷积后的图片和卷积前的图片尺寸不一致,这显然不是我们想要的结果,所以为了避免这种情况,需要先对原始图片做边界填充处理。在上面的情况中,我们需要先把原始图像填充为9*9的尺寸。 常用的区域填充方法包括: 用3*3定义原始图像的尺寸,补充为9*9的尺寸,图片上的颜色只为方便观...
阅读(1208) 评论(2)

Web安全(吴翰清)

安全工程师的核心竞争力不在于他能拥有多少个 0day,掌握多少种安全技术,而是在于他对安全理解的深度,以及由此引申的看待安全问题的角度和高度。 第一章 我的安全世界观 脚本小子 “Script Kids”。 黑客精神所代表的 Open、Free、Share。 Web 1.0 服务器端动态脚本的安全问题。 SQL注入的出现是Web安全史上的一个里程碑。 XSS(跨站脚本攻击)的出现则是W...
阅读(499) 评论(0)

tensorflow安装正确, import tf, the problem is "Couldn't find field google.protob.ExtensionRange.options"

问题描述import tensorflow error with correct installation, the problem is “Couldn’t find field google.protobuf.DescriptorProto.ExtensionRange.options”python import tensorflow 出现如下问题:I tensorflow/stream_exe...
阅读(1501) 评论(0)
343条 共18页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:517627次
    • 积分:6821
    • 等级:
    • 排名:第4108名
    • 原创:167篇
    • 转载:176篇
    • 译文:0篇
    • 评论:71条
    最新评论