关闭

机器学习之 weka学习(四)

标签: weka机器学习
373人阅读 评论(0) 收藏 举报
分类:

本文转自: 

http://blog.csdn.net/lantian0802/article/details/8875874

http://blog.csdn.net/lkj345/article/details/50152055



点击最上方的Classify按钮,选择Logistic(逻辑回归)分类方法,在Test options中选择Percentage split,66%。这样weka自动将大约2/3的数据作为训练集,大约1/3的数据作为测试集,采用逻辑回归作为分类方法,结果如下图。


 另外也可以选择Cross-validation,Folds设置为10,这是10-fold的交叉验证,首先随机将所有数据随机分成10份,将其中9份作为训练集,另外1份作为测试集,按照逻辑回归进行10次分类实验,最终保证每个数据都能作为测试集并且仅有一次,将10次分类结果综合起来得到最终的分类结果 

为了保证生成的模型的准确性而不至于出现拟合的现象,我们有必要采用10折交叉验证来选择和评估模型。

10 折交叉验证:英文名叫做10-fold corss –validation,用来测试算法的准确性。是常用的测试方法。将数据集分成10份,轮流将其中9份作为训练数据,1份作为测试数据,进行试验。每次试验都会得到相应的正确率(或差错率)。10次的结果的正确率(或差错率)的平均值作为对算法精确读的估计,一般还需要进行多次10折交叉验证。



- Correctly Classified Instances表示分类正确率 
- Incorrectly Classified Instances表示分类错误率 
- TP Rate是True Positive Rate的缩写,表示本来是正样本,结果也被分类成正样本的比例 
- FP Rate是False Positive Rate的缩写,表示本来是负样本,结果却被分类成了正样本的比例 
- Precision表示查准率,公式为Precision = TPTP+FP,含义是被分类为正样本中真正的正样本的比例 
- Recall表示查全率,公式为Recall = TPTP+FN,FN Rate是False Negative Rate的缩写,表示本来是正样本,结果却被分类成负样本的比例,所以Recall的含义是真正的正样本占整个数据集(分类正确的和错误的)中正样本的比例 
- F-Measure的公式是2PRP+R,是很常用的判断分类效果好坏的指标 


weka和matlab完成完整分类实验

http://blog.csdn.net/lkj345/article/details/50152055


WEKA的应用之 J48(C4.5)

http://blog.csdn.net/omenglishuixiang1234/article/details/48343987





0
0

猜你在找
【直播】机器学习&数据挖掘7周实训--韦玮
【套餐】系统集成项目管理工程师顺利通关--徐朋
【直播】3小时掌握Docker最佳实战-徐西宁
【套餐】机器学习系列套餐(算法+实战)--唐宇迪
【直播】计算机视觉原理及实战--屈教授
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之矩阵--黄博士
【套餐】微信订阅号+服务号Java版 v2.0--翟东平
【直播】机器学习之凸优化--马博士
【套餐】Javascript 设计模式实战--曾亮
查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:247246次
    • 积分:4254
    • 等级:
    • 排名:第7164名
    • 原创:154篇
    • 转载:171篇
    • 译文:0篇
    • 评论:55条
    最新评论