机器学习之 weka学习(四)

转载 2016年05月30日 14:55:53

本文转自: 

http://blog.csdn.net/lantian0802/article/details/8875874

http://blog.csdn.net/lkj345/article/details/50152055



点击最上方的Classify按钮,选择Logistic(逻辑回归)分类方法,在Test options中选择Percentage split,66%。这样weka自动将大约2/3的数据作为训练集,大约1/3的数据作为测试集,采用逻辑回归作为分类方法,结果如下图。


 另外也可以选择Cross-validation,Folds设置为10,这是10-fold的交叉验证,首先随机将所有数据随机分成10份,将其中9份作为训练集,另外1份作为测试集,按照逻辑回归进行10次分类实验,最终保证每个数据都能作为测试集并且仅有一次,将10次分类结果综合起来得到最终的分类结果 

为了保证生成的模型的准确性而不至于出现拟合的现象,我们有必要采用10折交叉验证来选择和评估模型。

10 折交叉验证:英文名叫做10-fold corss –validation,用来测试算法的准确性。是常用的测试方法。将数据集分成10份,轮流将其中9份作为训练数据,1份作为测试数据,进行试验。每次试验都会得到相应的正确率(或差错率)。10次的结果的正确率(或差错率)的平均值作为对算法精确读的估计,一般还需要进行多次10折交叉验证。



- Correctly Classified Instances表示分类正确率 
- Incorrectly Classified Instances表示分类错误率 
- TP Rate是True Positive Rate的缩写,表示本来是正样本,结果也被分类成正样本的比例 
- FP Rate是False Positive Rate的缩写,表示本来是负样本,结果却被分类成了正样本的比例 
- Precision表示查准率,公式为Precision = TPTP+FP,含义是被分类为正样本中真正的正样本的比例 
- Recall表示查全率,公式为Recall = TPTP+FN,FN Rate是False Negative Rate的缩写,表示本来是正样本,结果却被分类成负样本的比例,所以Recall的含义是真正的正样本占整个数据集(分类正确的和错误的)中正样本的比例 
- F-Measure的公式是2PRP+R,是很常用的判断分类效果好坏的指标 


weka和matlab完成完整分类实验

http://blog.csdn.net/lkj345/article/details/50152055


WEKA的应用之 J48(C4.5)

http://blog.csdn.net/omenglishuixiang1234/article/details/48343987





相关文章推荐

8大策略让你对抗机器学习数据集里的不均衡数据

本文转自:http://www.36dsj.com/archives/35137                    http://blog.csdn.net/heyongluoyao8/artic...

机器学习总结(六):集成学习(Boosting,Bagging,组合策略)

(也是面试常考) 主要思想:利用一定的手段学习出多个分类器,而且这多个分类器要求是弱分类器,然后将多个分类器进行组合公共预测。核心思想就是如何训练处多个弱分类器以及如何将这些弱分类器进行组合,个体分类...

机器学习之 weka学习(一)weka介绍,安装和配置环境变量

本部分详情可查看博客http://blog.csdn.net/u011067360/article/details/20844443                        ...

机器学习之 weka学习(五)示例用法

WEKA 开发学习 :源码法分析 http://www.360doc.com/userhome.aspx?userid=13256259&cid=11# 用 WEKA 进行数据挖掘 http...

机器学习之 weka学习(三)

本文转自:http://blog.csdn.net/qiao1245/article/category/6115745      Weka教程笔记    http://blog.csdn.net/q...

WEKA学习总结

1.      Weka处理的数据表格中,一个横行称为一个实例(Instance),竖行代表一个属性(Arrtibute),数据表格称为一个数据集,在weka看来,呈现了属性之间的一种关系(Relat...

机器学习之 weka学习(二)算法说明

本文转自:http://blog.csdn.net/mm_bit/article/details/47405433 weka中的各算法说明 1) 数据输入和输出 WOW():查看Weka函数...

Andrew Ng机器学习笔记+Weka相关算法实现(四)SVM和原始对偶问题

这篇博客主要讲解了Ng的课第六、七个视频,涉及到的内容包括,函数间隔和几何间隔、最优间隔分类器 ( Optimal Margin Classifier)、原始/对偶问题 ( Primal/Dual ...

Java weka机器学习

  • 2015-03-21 13:28
  • 407KB
  • 下载
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)