c++训练题(牵扯到大数据的保存)

原创 2015年07月08日 09:54:08

题目:The 5-digit number, 16807=7^5, is also a fifth power. Similarly, the 9-digit number, 134217728=8^9, is a ninth power. How many n-digit positive integers exist which are also an nth power?

题目的大概意思是7的5次方为16807,是一个5位数;同样8的9次方134217728也是一个9位数。求有多少类似n次方刚好是n位数的数字存在。

分析:1的1次方是1为1位数。1的2次方为1为1位数(不符合)。

   2的1次方是2为1位数。2的2次方为4为1位数(不符合)。

           3的1次方是3为1位数。3的2次方为9为1位数(不符合)。

           4的1次方是4为1位数。4的2次方为16为2位数。4的3次方为64为2位数(不符合)。

           一直到10,10的一次方为10为2位数,不符合条件。

从中我们可以得出这样的条件:1.满足底数条件的数字范围在1~9。2.底满足条件的n次方是连续的,从小到大的,不存在在n次不满足条件,n+1次满足条件的情况。

这个程序的难点不在于怎么算,而在于9的21次方已经超过了long long 的范围,容易出错,需要跳过整数类型来进行运算。

方法1,用log10来计算幂指数

// test.cpp : 定义控制台应用程序的入口点。
//判断有多少n位整数同时使另一个数的n次幂存在
//例如16807=7^5,16807是5位数,同时使7的5次幂。同理,134217728=8^9
//分析得知,需要一个判断正整数为几位数的子函数

#include "stdafx.h"
#include <iostream>
#include <sstream>
#include <string>
#include <cmath>
using namespace std;
int _tmain(int argc, _TCHAR* argv[])
{
	double n;
	int count=0;
	for(int i=1; i<10; i++)
	{
		n=1;
		//ostringstream os;
		//bool flag=true;
		while(int(log10(pow(i,n))+1)==n)
		{
			cout<<i<<"的"<<n<<"次幂"<<pow(i,n)<<"满足要求!"<<endl;
			++n;
			++count;
		}
	}
	cout<<"共有"<<count<<"个整数满足要求!"<<endl;
	system("pause");
	return 0;
}
方法2 用STL标准库的字符串来存储大数据,计算位数

// test.cpp : 定义控制台应用程序的入口点。
//判断有多少n位整数同时使另一个数的n次幂存在
//例如16807=7^5,16807是5位数,同时使7的5次幂。同理,134217728=8^9
//分析得知,需要一个判断正整数为几位数的子函数

#include "stdafx.h"
#include <iostream>
#include <sstream>
#include <string>
#include <cmath>
using namespace std;
int Digit(string num)
{
	int Len=num.length();
	//stringstream ss;
	return Len;
	//while((num/pow(10.0,n))>=1)
	//{
	//	++n;
	//}
}
int _tmain(int argc, _TCHAR* argv[])
{
	double n;
	int count=0;
	for(int i=1; i<10; i++)
	{
		n=1;
		ostringstream os;
		/*bool flag=true;*/
		while(true)
		{
			//int temp=pow(i,n);
			os.setf(ios::fixed);
			os<<pow(i,n);
			string str=os.str();
			int pos=str.find_first_of('.');
			string num=str.substr(0,pos);
			int s=Digit(num);
			os.clear();
			os.str("");
			if(s!=n)
			{
				//flag=false;
				break;
			}
			cout<<i<<"的"<<n<<"次幂"<<pow(i,n)<<"满足要求!"<<endl;
			++n;
			++count;
		}
	}
	cout<<"共有"<<count<<"个整数满足要求!"<<endl;
	system("pause");
	return 0;
}
结果:




相关文章推荐

王家林最受欢迎的一站式云计算大数据和移动互联网解决方案课程 V1(20140809)之Android企业级应用程序开发完整训练:精通Android商业级开发最佳实践的24堂课

从企业级商业实战的角度入手,24小时内通过23个动手实战案例,循序渐进的对Android商业级别的应用程序开发要点各个击破,依托于在多年的Android(6款完整的硬件产品和超过20款应用软件)开发和...

王家林的“云计算分布式大数据Hadoop实战高手之路---从零开始”的第九讲Hadoop图文训练课程:剖析NameNode和Secondary NameNode的工作机制和流程

本讲主要剖析SecondaryNameNode。   “云计算分布式大数据Hadoop实战高手之路”之完整发布目录 云计算分布式大数据实战技术Hadoop交流群:312494188,...
  • twlkyao
  • twlkyao
  • 2013年12月21日 19:01
  • 1280

batch-GD, SGD, Mini-batch-GD, Stochastic GD, Online-GD -- 大数据背景下的梯度训练算法

原地址:http://www.cnblogs.com/richqian/p/4549590.html 机器学习中梯度下降(Gradient Descent, GD)算法只需要计算损失函数的一阶导数...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:c++训练题(牵扯到大数据的保存)
举报原因:
原因补充:

(最多只允许输入30个字)