关闭

matlab的double和single类型

看到博客(这里)中说,在matlab中, 当数据比较大时,运算起来就困难了,有时候还会out of memory。原因是默认情况下matlab用double存储数据。而double数据类型占8个字节,single类型占4个字节。把数据类型从double类型转换成single类型可以节省一半的空间。(如果怀疑可以用whos指令查看)。本来很有道理的,但是看到有人说(比如这里):The forma...
阅读(28286) 评论(4)

Computer Vision的尴尬---by林达华

Computer Vision是AI的一个非常活跃的领域,每年大会小会不断,发表的文章数以千计(单是CVPR每年就录取300多,各种二流会议每年的文章更可谓不计其数),新模型新算法新应用层出不穷。可是,浮华背后,根基何在? 对于Vision,虽无大成,但涉猎数年,也有管窥之见。Vision所探索的是一个非常复杂的世界,对于这样的世界如何建模,如何分析,却一直没有受普遍承认的理论体系。大部分的...
阅读(4493) 评论(3)

内核线程、轻量级进程、用户线程

转载:http://www.cnitblog.com/tarius.wu/articles/2277.html 转载:http://www.fansoo.com/blog/2011/kernel-threads-lightweight-processes-threads-and-linuxthreads-library-users/ 内核线程 内核线程只运行在内核态,不受用户态上下文的拖...
阅读(2101) 评论(0)

模式识别方向2014年主要会议deadline

第一年读博,给自己一些目标。   CVPR2014   Nov,1th,2013; ICPR2014    Dec.20,2013; 两年一届,今年又有了。俺们实验室中的稍微多一些的会议了。 ECCV2014 :两年一届,明年9月份开,important dates还没给出来。难度太大,哎~ ICMR2014  Dec 2,2013; ICME2014   Dec 9,2013; S...
阅读(8227) 评论(4)

特征选择和特征学习中的过完备

ScSPM的论文中提到了码书的过完备(over-complete)。一开始没有太在意过完备有什么问题,今天想了想把这个概念弄明白了。...
阅读(4757) 评论(5)

理解sparse coding

本文的内容主要来自余凯老师在CVPR2012上给的Tutorial。前面在总结ScSPM和LLC的时候,引用了很多Tutorial上的图片。其实这个Tutorial感觉写的挺好的,所以这次把它大致用自己的语言描述一下。不过稀疏编码是前两年比较火的东西,现在火的是deep learning了。 1、What is sparse coding?        稀疏编码的提出,最早是用于解释人脑的视...
阅读(25600) 评论(9)

图像的稀疏表示——ScSPM和LLC的总结

上一篇提到了SPM。这篇博客打算把ScSPM和LLC一起总结了。ScSPM和LLC其实都是对SPM的改进。这些技术,都是对特征的描述。它们既没有创造出新的特征(都是提取SIFT,HOG, RGB-histogram et al),也没有用新的分类器(也都用SVM用于最后的image classification),重点都在于如何由SIFT、HOG形成图像的特征(见图1)。从BOW,到BOW+SPM...
阅读(20676) 评论(18)

Spatial Pyramid Matching 小结

本文介绍了SPM的细节,以及匹配问题与分类问题之间的联系。...
阅读(25379) 评论(47)

Li Fei-fei写给她学生的一封信,如何做好研究以及写好PAPER

在微博上看到的,读完还是有些收获的,首先是端正做research的态度。 我是从这里看到的:http://www.vjianke.com/ZM0BC.clip   ---------------------------------------以下是原文---------------------------------------------   De-mystifying Good Re...
阅读(5098) 评论(3)

迁移学习的相关概念

之前谈到了迁移学习和自我学习(可以看这里),今天会系统整理一下与迁移学习相互关联的几个概念。         迁移学习的目标是将从一个环境中学到的知识用来帮助新环境中的学习任务。用一句不正式的语言来定义,则是说,当教会了d电脑学习区分大象和犀牛的能力后,电脑利用这一本领更快或更准确地来学习如何区分飞机和鸟。因为人具有知识迁移的能力(所谓温故而知新),当我们学会了一项本领后,再去学习另外一项相关的...
阅读(5015) 评论(1)

LSA,pLSI,LDA相关的资料整理

1、  《LSA and PLSA笔记》  将LSA和pLSI的优点和缺点进行了总结和比较,是目前看到的非常好的资料; 2、    Zhou Li的博客,尤其是LSA和LDA的两篇note,不仅详细介绍了模型和求解过程、相关的背景知识,同时还有实验结果和代码; 3、   《PLSA中的EM算法 》,仅仅是介绍pLSI,不过文档中又贴了其他reference,包括我看的一份Liangjie...
阅读(3960) 评论(0)

百度图像搜索探秘

本文转自:http://blog.sina.com.cn/s/blog_6ae183910101gily.html --------------------------------------------------------------- 昨天,百度上线了新的相似图(similar image search)搜索,试了风景、人物、文字等不同类型query的效果,感觉效果非常赞。尤其对于...
阅读(3641) 评论(0)

如何评价一个好的推荐系统算法

Netflix 在网上举办了一个挑战赛,奖励100万美元向全世界选手提出一套电影的推荐系统,RMSE比当前系统小10%的最优秀的那支队伍将获得该奖项。         但是如何评价一个更好的推荐系统?What do we mean by better?         在Netflix Prize, 对系统的性能评价使用了用户对电影的实际评分与推荐系统对每部电影预测评分之间的RMSE。如果说我...
阅读(4986) 评论(0)

降维(二)----Laplacian Eigenmaps

降维系列: 降维(一)----说说主成分分析(PCA)的源头降维(二)----Laplacian Eigenmaps ---------------------                   前一篇文章中介绍了主成分分析。PCA的降维原则是最小化投影损失,或者是最大化保留投影后数据的方差。在谈到其缺点的时候,我们说这一目标并不一定有助于数据的分类,换句话说,原本在高维空间中属...
阅读(13333) 评论(11)

降维(一)----说说主成分分析(PCA)的源头

降维系列: 降维(一)----说说主成分分析(PCA)的源头降维(二)----Laplacian Eigenmaps ---------------------         主成分分析(PCA) 在很多教程中做了介绍,但是为何通过协方差矩阵的特征值分解能够得到数据的主成分?协方差矩阵和特征值为何如此神奇,我却一直没弄清。今天终于把整个过程整理出来,方便自己学习,也和大家交流。...
阅读(17387) 评论(9)
58条 共4页首页 上一页 1 2 3 4 下一页 尾页
    个人资料
    • 访问:667409次
    • 积分:5704
    • 等级:
    • 排名:第6486名
    • 原创:40篇
    • 转载:16篇
    • 译文:2篇
    • 评论:340条
    个人主页
    联系方式

    jiang1st2010@gmail.com

    请在邮件中简单自我介绍。请尽量在博客中给我留言。

    新浪微博
    最新评论