Dirichlet Process 和 Hierarchical Dirichlet Process

最近在看Dirichlet分布以及Dirichlet过程,因为最近感觉Dirichlet过程在聚类以及一些贝叶斯模型上使用很多。参考了很多资料,其中这篇博客介绍HDP算是比较清楚的了,原文链接是 http://hi.baidu.com/zentopus/item/46a622f5ef13e4c5a835a28e 另外关于Dirichlet Process还有以下文献可以参考: 1. h...
阅读(4212) 评论(2)

局部特征(6)——局部特征描述汇总

局部特征系列: 局部特征(1)——入门篇 局部特征(2)——Harris角点 局部特征(3)——SURF特征总结 局部特征(4)——SIFT和SURF的比较 局部特征(5)——如何利用彩色信息 Color Descriptors 局部特征(6)——局部特征描述汇总  --------------------------------------...
阅读(7573) 评论(1)

迁移学习&自我学习

最近在看Ng的深度学习教程,看到self-taught learning的时候,对一些概念感到很陌生。作为还清技术债的一个环节,用半个下午的时间简单搜了下几个名词,以后如果会用到的话再深入去看。         监督学习在前一篇博客中讨论过了,这里主要介绍下迁移学习、自我学习。因为监督学习需要大量训练样本为前提,同时对训练样本的要求特别严格,要求训练样本与测试样本来自于同一分布。要是满足不了这要...
阅读(11126) 评论(0)

LBP特征

zouxy09@qq.com         LBP(Local Binary Pattern,局部二值模式)是一种用来描述图像局部纹理特征的算子;它具有旋转不变性和灰度不变性等显著的优点。它是首先由T. Ojala, M.Pietikäinen, 和 D. Harwood 在1994年提出,用于纹理特征提取。而且,提取的特征是图像的局部的纹理特征;   1、LBP特征的描述...
阅读(2789) 评论(5)

HOG特征

HOG特征 zouxy09@qq.com 1、HOG特征:        方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+S...
阅读(9971) 评论(0)

机器学习的数学基础(1)--Dirichlet分布

这一系列(机器学习的数学基础)主要包括目前学习过程中回过头复习的基础数学知识的总结。 基础知识:conjugate priors共轭先验     共轭先验是指这样一种概率密度:它使得后验概率的密度函数与先验概率的密度函数具有相同的函数形式。它极大地简化了贝叶斯分析。     如何解释这句话。由于     P(u|D) = p(D|u)p(u)/p(D)   (1.0式)     其中D是...
阅读(23344) 评论(3)

Linux的IO系统常用系统调用及分析

Linux的IO从广义上来说包括很多类,从狭义上来说只是讲磁盘的IO。在本文中我也就只是主要介绍磁盘的IO。在这里我对Linux的磁盘IO的常用系统调用进行深入一些的分析,希望在大家在磁盘IO产生瓶颈的时候,能够帮助做优化,同时我也是对之前的一篇博文作总结。转载此文请标明出处:http://blog.csdn.net/jiang1st2010/article/details/8373063...
阅读(6520) 评论(2)

表驱动编程方法 table-driven programming

最近写了一段这样的代码。代码的功能是,通过函数function()返回的错误代码,生成一段说明该代码错误的log。       最开始我的代码是这样写的: enum error_t{ ERROR0=0, ERROR1, ERROR2, ERROR3 }; error_t function() { //...... } int main() { er...
阅读(2332) 评论(1)

利用swig实现python调用C/C++的方法

Python是一门语法简单而且清晰的脚本语言,不过执行效率比较低。简单的说就是开发相对C/C++容易,但是执行效率不如C/C++,甚至有人称之为执行效率最低的鱼眼。如果可以将最重要的而且变化一般不大的运算逻辑用 C/C++实现,其他用python书写,那就最好不过了。据说python底层就是用C实现的,因此这一想法也是可行的。目前来说,python调用C/C++有以下几种方法: 1)  利用py...
阅读(5646) 评论(4)

数据库索引原理(2)------MemCached

Memcached是高性能的分布式内存缓存服务器。它的主要目的不是基于本地缓存的,而主要用在分布式系统中。Memcached中保存的数据都存储在Memcached内置的内存存储空间中。由于数据仅存在于内存中,因此重启Memcached、重启操作系统会导致全部数据消失。Memcached是记录级的缓存,之前调研报告里提到过与MySQL、Server等页级缓存会缓存无效数据的,记录级的缓存则使内存利用...
阅读(3445) 评论(1)

数据库索引原理(1)-----TokuDB中的COLA-Tree

目前无论是商业的SQL Server,还是开源的MySQL,都基本上还在用比较老的B+Tree(SQL Server用的是标准的B-Tree)的索引结构。从原理来说,B系列树在查询过程中应该是不会慢的,而主要问题就是出现在插入。B-Tree在插入的时候,如果是最后一个node,那么速度非常快,因为是顺序写。但如果数据插入比较无序的时候,比如先插入5然后10000然后3然后800这样跨度很大的数...
阅读(7575) 评论(0)

从fread和mmap谈C++读文件的性能

(关于Linux读文件的更深入理解,猛戳这里吧)         在进行大规模数据处理时,读文件很有可能成为速度瓶颈。不管你的CPU有4个核还是8个核,主频有2G还是3G,硬盘IO速度总是有个上限的。在本人最近的一次经历中,对一个11G的文本进行数据处理,一共耗时34.8秒,其中竟然有30.2秒用在访问IO上,占了所有时间的87%左右。         虽然说硬盘IO是有上限的,那么C++...
阅读(7980) 评论(1)

Linux下多线程编程简单示例

最近尝试下Linux下使用多线程开发程序,在百度文库中找到了一段比较好的范例,介绍的很全面,拿出来和大家分享。         Linux系统下的多线程遵循POSIX线程接口,称为 pthread。编写Linux下的多线程程序,需要使用头文件pthread.h,连接时需要使用库libpthread.a。顺便说一下,Linux下pthread的实现是通过系统调用clone()来实现的。clone(...
阅读(2672) 评论(0)

聚类(2)——层次聚类 Hierarchical Clustering

聚类系列: 聚类(序)----监督学习与无监督学习 聚类(1)----混合高斯模型 Gaussian Mixture Model 聚类(2)----层次聚类 Hierarchical Clustering 聚类(3)----谱聚类 Spectral Clustering --------------------------------   不管是GMM,还...
阅读(72144) 评论(13)

聚类(1)——混合高斯模型 Gaussian Mixture Model

聚类系列: 聚类(序)----监督学习与无监督学习 聚类(1)----混合高斯模型 Gaussian Mixture Model 聚类(2)----层次聚类 Hierarchical Clustering 聚类(3)----谱聚类 Spectral Clustering --------------------------------         聚...
阅读(47003) 评论(17)
58条 共4页首页 上一页 1 2 3 4 下一页 尾页
    个人资料
    • 访问:648488次
    • 积分:5617
    • 等级:
    • 排名:第4648名
    • 原创:40篇
    • 转载:16篇
    • 译文:2篇
    • 评论:338条
    个人主页
    联系方式

    jiang1st2010@gmail.com

    请在邮件中简单自我介绍。请尽量在博客中给我留言。

    新浪微博
    最新评论