Longest increasing subsequence |LeetCode

原创 2015年11月19日 14:22:04


int lengthOfLIS1(vector<int>& nums) {

        if(nums.size()==0)
            return  0;
        vector<int> res;
        for(int i=0;i<nums.size();++i){
            auto it=lower_bound(res.begin(),res.end(),nums[i]);
            if(it==res.end())
                res.push_back(nums[i]);//insert new element
            else
                *it=nums[i];//update some element at res
        }
        return res.size();
    }
版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

LeetCode Longest Increasing Subsequence

题目: Given an unsorted array of integers, find the length of longest increasing subsequence. ...

leetcode 300. Longest Increasing Subsequence

Given an unsorted array of integers, find the length of longest increasing subsequence. For examp...

LeetCode 题解(Week6):300. Longest Increasing Subsequence

原题目Given an unsorted array of integers, find the length of longest increasing subsequence.For exampl...

LeetCode 300: Longest Increasing Subsequence

最长增加的子序列问题,归于动态规划问题。分析:从最后面的数往前去找。假设串为[10,9,2,5,3,7,101,18],我们从最后一个数18开始找,那么18这个数我们到底需不需要第一步就将它加入到最长...

Leetcode Algorithm 300. Longest Increasing Subsequence

Leetcode Algorithm 300. Longest Increasing Subsequence 给定一个乱序的整形数组,寻找其中最长严格上升子序列的最大长度

Leetcode 300. Longest Increasing Subsequence (Medium) (cpp)

300. Longest Increasing Subsequence (Medium)

leetcode 300.Longest Increasing Subsequence(最长递增子序列) O(nlogn)算法

leetcode 300.Longest Increasing Subsequence(最长递增子序列) ,网上多是动态规划,复杂度为O(n^2)算法;本文设计一个O(nlogn)算法,即维护最小的最...

[LeetCode]Longest Increasing Subsequence

这是一道典型的动态规划问题,通常有两种解法,一种自然的思想时间复杂度为O(n^2),而另一种巧妙地思路可以利用二分查找把时间复杂度降低到O(nlogn)。下面分别介绍这两种做法。

LeetCode-300.Longest Increasing Subsequence

https://leetcode.com/problems/longest-increasing-subsequence/ Given an unsorted array of integers,...

(Leetcode)Longest Increasing Subsequence——dp,bisearch

300. Longest Increasing Subsequence 题目 Given an unsorted array of integers, find the length of lon...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)